During the last two decades, Global Positioning System (GPS) geodetic-grade receivers and accelerometers have been implemented in Structural Health Monitoring (SHM). Most recently, the use of sensors integrated in smartphones has been evolving. Although some of their capabilities are validated for small and local structures, there is a gap in knowledge about the use of sensors embedded in smartphones and other electronic devices for SHM of complex structures as bridges. To contribute in this area, this paper demonstrates the application of GPS receivers, accelerometers, and smartphones, integrating a smart sensor for the SHM of bridges. In order to validate its capabilities, the alternative smart sensor is used to study a particular bridge with vibration problems. Semistatic and dynamic displacements are obtained by means of GPS measurements. Accelerations in three directions of the bridge are determined using the accelerometer and the smartphone. Based on the results of the alternative smart sensor, inappropriate structural behavior is detected in the vertical direction of the bridge. In addition, dynamic characteristics are extracted using the smart sensor applying the Fast Fourier Transformation (FFT) and periodogram to the structural responses. As a result, it is verified the applicability of the fused smart sensor for SHM on real-scale bridges.
A unified Performance-Based Seismic Design (PBSD) procedure is proposed and successfully implemented. It provides an alternative to the currently used life safety design requirement. To successfully develop the concept, structures are represented by finite elements and excited by the seismic loading in time domain. A novel reliability evaluation procedure is proposed for such representation. An improved response surface based procedure is proposed by combining it with the First-Order Reliability Method (FORM) and the appropriate response surfaces are constructed by combining the saturated design and the central composite design sampling schemes. Performances are defined in terms of Collapse Prevention (CP), Life Safety (LS), and Immediate Occupancy (IO), as commonly used in the profession. The corresponding risks are evaluated by exciting a 9-story steel frame designed by experts satisfying all post-Northridge seismic design requirements. It was excited by 20 earthquake time histories for each
An alternative probabilistic assessment of buildings excited by multi-level seismic loading is presented in this paper. This evaluation is developed for both steel and reinforced concrete buildings using the Performance-Based Seismic Design (PBSD) concept. The methodology implements Probability Density Functions (PDFs) of inter-story drifts to extract structural risk in terms of the reliability index. Ten buildings of steel and reinforced concrete, respectively, are designed considering different locations in Mexico. Then, each structure is excited by ground motions representing different earthquake intensity levels for three performance levels: immediate occupancy, life safety, and collapse prevention. The deterministic seismic response of buildings is extracted using the finite element software OpenSees. Based on the results, it can be stated that the probabilistic assessment technique represents an efficient approach for extracting the seismic risk of structures using PDFs of inter-story drifts. Lastly, it is demonstrated that the evaluation of buildings following PBSD is a step in the right direction, moving from traditional deterministic design concepts to probabilistic philosophies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.