Enceladus is characterized by a south polar hot spot associated with a large outflow of heat, the source of which remains unclear. We compute the heat generated via viscous dissipation resulting from tidal and (longitudinal) libration forcing in the moon's subsurface ocean using the linearized Navier‐Stokes equation in a three‐dimensional spherical model. We conclude that libration is the dominant cause of dissipation at the linear order, providing up to ∼0.001 GW of heat to the ocean, which remains insufficient to explain the ∼10 GW observed by Cassini. We also illustrate how resonances with inertial modes can significantly augment the dissipation. Our work is an extension to Rovira‐Navarro et al. (2019, https://doi.org/10.1016/j.icarus.2018.11.010) to include the effects of libration and the presence of the icy crust. The model developed here is readily applicable to the study of other moons with a subsurface ocean and planets with a liquid core.
We present a fully relativistic numerical method for the study of cosmological problems using the Baumgarte-Shapiro-Shibata-Nakamura formalism on a dynamical Friedmann-Lemaître-Robertson-Walker background. This has many potential applications including the study of the growth of structures beyond the linear regime. We present one such application by reproducing the Lemaître-Tolman-Bondi solution for the collapse of pressureless matter with arbitrary lapse function. The regular and smooth numerical solution at the center of coordinates proceeds in a natural way by relying on the Partially Implicit Runge-Kutta algorithm described in Montero and Cordero-Carrión [arXiv:1211.5930]. We generalize the usual radiative outer boundary condition to the case of a dynamical background and show the stability and convergence properties of the method in the study of pure gauge dynamics on a de Sitter background.
The observation of global acoustic waves (p modes) in the Sun has been key to unveiling its internal structure and dynamics. A different kind of wave, known as sectoral Rossby modes, has been observed and identified, which potentially opens the door to probing internal processes that are inaccessible through p-mode helioseismology. Yet another set of waves, appearing as retrograde-propagating, equatorially antisymmetric vorticity waves, has also been observed but their identification remained elusive. Here, through a numerical model implemented as an eigenvalue problem, we provide evidence supporting the identification of those waves as a class of inertial eigenmodes, distinct from the Rossby-mode class, with radial velocities comparable to the horizontal ones deep in the convective zone but still small compared to the horizontal velocities toward the surface. We also suggest that the signature of tesseral-like Rossby modes might be present in recent observational data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.