Grinding is one of the important secondary manufacturing processes used to improve the dimensional accuracy, surface finish and geometric form of the component. Grinding wheel consists of abrasive particles, which perform the metal removal function. The sharpness of the grinding wheel is one of the important factors for achieving the required surface geometry in the component. In this study, a simple device used to measure the sharpness of the abrasive particles of the grinding wheel is designed and fabricated. Aluminium oxide grinding wheel conditions are established using the sharpness of the abrasive grinding wheel. Grinding process is monitored using acoustic emission (AE) Sensor. AE features are extracted in time domain and dominated features which contain useful information about the grinding wheel that are identified. A correlation between grinding wheel condition and AE feature is established using ANN-based machine learning classifier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.