The HMG box is an 80 amino acid domain found in a variety of eukaryotic chromosomal proteins and transcription factors. Binding to DNA is associated with recognition of structural distortion or manipulation of DNA structure. All the HMG box domains bind to four-way DNA junctions, which must therefore present some feature that is common to the binding targets of this wide variety of proteins. Since the four-way junction can itself adopt a variety of structures depending upon conditions, it is important to determine in which form it exists in complexes with HMG boxes. We find that a single HMG box domain is bound exclusively to the open square form of the junction and that conditions that stabilize the stacked X structure significantly lower affinity for the HMG box. We suggest that the HMG domain binds to one arm of the junction in the minor groove at the point of strand exchange and we present a model for the structure of the complex.
Endonuclease I is a 149 amino acid protein of bacteriophage T7 that is a Holliday junction-resolving enzyme, i.e. a four-way junction-selective nuclease. We have performed a systematic mutagenesis study of this protein, whereby all acidic amino acids have been individually replaced by other residues, mainly alanine. Out of 21 acidic residues, five (Glu20, Glu35, Glu65, Asp55 and Asp74) are essential. Replacement of these residues by other amino acids leads to a protein that is inactive in the cleavage of DNA junctions, but which nevertheless binds selectively to DNA junctions. The remaining 16 acidic residues can be replaced without loss of activity. The five critical amino acids are located within one section of the primary sequence. It is rather likely that their function is to bind one or more metal ions that coordinate the water molecule that brings about hydrolysis of the phosphodiester bond. We have also constructed a mutant of endonuclease I that lacks nine amino acids (six of which are arginine or lysine) at the C-terminus. Unlike the acidic point mutants, the C-terminal truncation is unable to bind to DNA junctions. It is therefore likely that the basic C-terminus is an important element in binding to the DNA junction.
Background: DNA polymerase δ is essential for eukaryotic DNA replication and also plays a role in DNA repair. The processivity of this polymerase complex is dependent upon its interaction with the sliding clamp PCNA and the polymerase-PCNA interaction is largely mediated through the p66 polymerase subunit. We have analysed the interactions of the human p66 DNA polymerase δ subunit with PCNA and with components of the DNA polymerase δ complex in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.