OBJECTIVETranscription factor 7-like 2 (TCF7L2) polymorphisms are strongly associated with type 2 diabetes, but controversially with plasma lipids and cardiovascular disease. Interactions of the Mediterranean diet (MedDiet) on these associations are unknown. We investigated whether the TCF7L2-rs7903146 (C>T) polymorphism associations with type 2 diabetes, glucose, lipids, and cardiovascular disease incidence were modulated by MedDiet.RESEARCH DESIGN AND METHODSA randomized trial (two MedDiet intervention groups and a control group) with 7,018 participants in the PREvención con DIetaMEDiterránea study was undertaken and major cardiovascular events assessed. Data were analyzed at baseline and after a median follow-up of 4.8 years. Multivariable-adjusted Cox regression was used to estimate hazard ratios (HRs) for cardiovascular events.RESULTSThe TCF7L2-rs7903146 polymorphism was associated with type 2 diabetes (odds ratio 1.87 [95% CI 1.62–2.17] for TT compared with CC). MedDiet interacted significantly with rs7903146 on fasting glucose at baseline (P interaction = 0.004). When adherence to the MedDiet was low, TT had higher fasting glucose concentrations (132.3 ± 3.5 mg/dL) than CC+CT (127.3 ± 3.2 mg/dL) individuals (P = 0.001). Nevertheless, when adherence was high, this increase was not observed (P = 0.605). This modulation was also detected for total cholesterol, LDL cholesterol, and triglycerides (P interaction < 0.05 for all). Likewise, in the randomized trial, TT subjects had a higher stroke incidence in the control group (adjusted HR 2.91 [95% CI 1.36–6.19]; P = 0.006 compared with CC), whereas dietary intervention with MedDiet reduced stroke incidence in TT homozygotes (adjusted HR 0.96 [95% CI 0.49–1.87]; P = 0.892 for TT compared with CC).CONCLUSIONSOur novel results suggest that MedDiet may not only reduce increased fasting glucose and lipids in TT individuals, but also stroke incidence.
The associations of the C34T polymorphism of the adenosine monophosphate deaminase 1 (AMPD1) gene with cardiorespiratory phenotypes were tested during cycling exercise at absolute and relative power outputs progressing to exhaustion before and after endurance training for 20 wk in the HERITAGE Family Study cohort (n = 779). Since no blacks were mutant homozygotes (TT), only whites were considered for analysis (400 normal homozygotes, CC; 97 heterozygotes, CT; and 6 TT). For sedentary state, cycling at the absolute power output of 50 W resulted in a higher rating of perceived exertion in TT (P < 0.0001). At the relative intensity of 60% of Vo(2 max), stroke volume was lower in TT (P < 0.05). Maximal values for power output, systolic blood pressure, heart rate, Vco(2), and respiratory exchange ratio were lower in TT (P < 0.05). The cardiorespiratory training response at 50 W and at 60% of Vo(2 max) was similar across C34T-AMPD1 genotypes. However, the maximal values for ventilation, Vo(2), and Vco(2) during exercise increased less in TT (P < 0.01). The results indicate that subjects with the TT genotype at the C34T AMPD1 gene have diminished exercise capacity and cardiorespiratory responses to exercise in the sedentary state. Furthermore, the training response of ventilatory phenotypes during maximal exercise is more limited in TT.
This review summarizes results from studies investigating the physical characteristics, daily energy expenditures, diets, and effects of nutritional supplements to the habitual diets of soecer players. The results show that players fall within a wide range of stature and body weight, and they are classified as mesomorphs. The body fat of male players is about 10% of body weight, whereas the average for females is about 21%. Energy expenditure for males is about 4,000 kcal on training days and 3,800 keal on match day. while energy intake reported in other studies is on the order of 3,700 kcal. Carbohydrate (CHO), fat, and protein intakes are about 53,30, and 14% of energy intake, respectively, the remaining being from alcohol intake. There are indications that CHO supplements might be beneficial during soccer performance. However, more research is needed to clarity the importance of branched-chain amino acid and creatine supplementation in soccer.
We used (1)H-magnetic resonance spectroscopy to noninvasively determine total creatine (TCr), choline-containing compounds (Cho), and intracellular (IT) and extracellular (between-muscle fibers) triglycerides (ET) in three human skeletal muscles. Subjects' (n = 15 men) TCr concentrations in soleus [Sol; 100.2 +/- 8.3 (SE) mmol/kg dry wt] were lower (P < 0.05) than those in gastrocnemius (Gast; 125.3 +/- 9.2 mmol/kg dry wt) and tibialis anterior (TA; 123. 7 +/- 8.8 mmol/kg dry wt). The Cho levels in Sol (35.8 +/- 3.6 mmol/kg dry wt) and Gast (28.5 +/- 3.5 mmol/kg dry wt) were higher (P < 0.001 and P < 0.01, respectively) compared with TA (13.6 +/- 2. 4 mmol/kg dry wt). The IT values were found to be 44.8 +/- 4.6 and 36.5 +/- 4.2 mmol/kg dry wt in Sol and Gast, respectively. The IT values of TA (24.5 +/- 4.5 mmol/kg dry wt) were lower than those of Sol (P < 0.01) and Gast (P < 0.05). There were no differences in ET [116.0 +/- 11.2 (Sol), 119.1 +/- 18.5 (Gast), and 91.4 +/- 19.2 mmol/kg dry wt (TA)]. It is proposed that the differences in metabolite levels may be due to the differences in fiber-type composition and deposition of metabolites due to the adaptation of different muscles during locomotion.
The main purpose of this study was to evaluate non‐invasively with magnetic resonance spectroscopy (1H‐MRS) changes in the concentrations of intracellular (IT) and extracellular (between muscle fibres) triglycerides (ET) in skeletal muscles of trained males (age range: 24–38 years) during two standard exercise protocols of alternating velocities. Protocol 1 consisted of locomotion in a shuttle manner between two lines 30 m apart at four different velocities (1, 2, 3 and 4 m s−1) which were alternated every minute in a standard routine for 90 min, whereas Protocol 2 included locomotion between two lines 20 m apart at only three velocities (2, 2.7 and 4 m s−1) until volitional exhaustion. The heart rate during both protocols fluctuated between 140 and 200 beats min−1. Using pre‐exercise muscle water to quantify individual total creatine (TCr) that was utilized as an internal standard and assuming that TCr does not change during exercise, subjects’ mean IT and ET concentrations in soleus (Sol) muscle before Protocol 1 (n= 8) were 45.8 ± 4.8 mmol (kg dry weight)−1 (mean ± s.e.m.) and 93.1 ± 14.1 mmol (kg dry weight)−1, respectively. After the exercise, the concentrations of IT and ET were not significantly different from the values at rest. Before Protocol 2 (n= 4), IT concentrations in Sol, gastrocnemius (Gast) and tibialis (Tib) muscles were 46.4 ± 13.6, 35.0 ± 12.1 and 23.1 ± 4.8 mmol (kg dry weight)−1, respectively, and were not affected by the exhaustive exercise. The ET concentrations in Sol, Gast and Tib were 136.4 ± 38.1, 175.3 ± 86.5 and 79.3 ± 20.0 mmol (kg dry weight)−1, respectively, and they did not change significantly after exhaustion. The study showed that levels of IT and ET were not affected by alternating intensity exercise to fatigue. This suggests that IT and ET in human Sol, Gast and Tib muscles do not contribute significantly to the energy turnover during this type of exercise. Energy for this type of muscle contraction may arise primarily from muscle phosphocreatine (PCr) and glycogen breakdown, circulating glucose and fatty acids from triglycerides other than those encountered within and between muscle cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.