In a six-year program started in July 2014, the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. These observations will be conducted simultaneously with the Time Domain Spectroscopic Survey (TDSS) designed for variability studies and the Spectroscopic Identification of eROSITA Sources (SPIDERS) program designed for studies of X-ray sources. In particular, eBOSS will measure with percent-level precision the distance-redshift relation with baryon acoustic oscillations (BAO) in the clustering of matter. eBOSS will use four different tracers of the underlying matter density field to vastly expand the volume covered by BOSS and map the large-scale-structures over the relatively unconstrained redshift range 0.6 < z < 2.2. Using more than 250,000 new, spectroscopically confirmed luminous red galaxies at a median redshift z = 0.72, we project that eBOSS will yield measurements of the angular diameter distance d A (z) to an accuracy of 1.2% and measurements of H(z) to 2.1% when combined with the z > 0.6 sample of BOSS galaxies. With ∼ 195, 000 new emission line galaxy redshifts, we expect BAO measurements of d A (z) to an accuracy of 3.1% and H(z) to 4.7% at an effective redshift of z = 0.87. A sample of more than 500,000 spectroscopically-confirmed quasars will provide the first BAO distance measurements over the redshift range 0.9 < z < 2.2, with expected precision of 2.8% and 4.2% on d A (z) and H(z), respectively. Finally, with 60,000 new quasars and reobservation of 60,000 BOSS quasars, we will obtain new Lyα forest measurements at redshifts z > 2.1; these new data will enhance the precision of d A (z) and H(z) at z > 2.1 by a factor of 1.44 relative to BOSS. Furthermore, eBOSS will provide improved tests of General Relativity on cosmological scales through redshift-space distortion (RSD) measurements, improved tests for non-Gaussianity in the primordial density field, and new constraints on the summed mass of all neutrino species. Here, we provide an overview of the cosmological goals, spectroscopic target sample, demonstration of spectral quality from early data, and projected cosmological constraints from eBOSS. eBOSS 3 confidence, where w is the ratio of pressure to energy density for dark energy. Thus, current observations are generally consistent with the simplest picture where dark energy is described completely by Einstein's cosmological constant (Λ).New precise observations can unravel the origin of the accelerating universe; specifically, to determine if cosmic acceleration is caused by deviations in General Relativity (GR) on large scales or by a new form of (dark) energy. It is possible to decouple scenarios of acceleration that require dark energy from those that require modifications to GR by independently probing both cosmic expansion history and the structure growth rate. Four primary observational techniques are generally accepted as the most powerful toward obtaining that goal (e.g. Albrech...
SPIDERS (The SPectroscopic IDentification of eROSITA Sources) is a programme dedicated to the homogeneous and complete spectroscopic follow-up of X-ray active galactic nuclei and galaxy clusters over a large area (∼7500 deg 2 ) of the extragalactic sky. SPIDERS is part of the Sloan Digital Sky Survey (SDSS)-IV project, together with the Extended Baryon Oscillation Spectroscopic Survey and the Time-Domain Spectroscopic Survey. This paper describes the largest project within SPIDERS before the launch of eROSITA: an optical spectroscopic survey of X-ray-selected, massive (∼10 14 -10 15 M ) galaxy clusters discovered in ROSAT and XMMNewton imaging. The immediate aim is to determine precise ( z ∼ 0.001) redshifts for 4000-5000 of these systems out to z ∼ 0.6. The scientific goal of the program is precision cosmology, using clusters as probes of large-scale structure in the expanding Universe. We present the cluster samples, target selection algorithms and observation strategies. We demonstrate the efficiency of selecting targets using a combination of SDSS imaging data, a robust red-sequence finder and a dedicated prioritization scheme. We describe a set of algorithms and workflow developed to collate spectra and assign cluster membership, and to deliver catalogues of spectroscopically confirmed clusters. We discuss the relevance of line-of-sight velocity dispersion estimators for the richer systems. We illustrate our techniques by constructing a catalogue of 230 spectroscopically validated clusters (0.031 < z < 0.658), found in pilot observations. We discuss two potential science applications of the SPIDERS sample: the study of the X-ray luminosity-velocity dispersion (L X -σ ) relation and the building of stacked phase-space diagrams.
Context. Studies of galaxy clusters provide stringent constraints on models of structure formation. Provided that selection effects are under control, large X-ray surveys are well suited to derive cosmological parameters, in particular those governing the dark energy equation of state. Aims. We forecast the capabilities of the all-sky eROSITA (extended ROentgen Survey with an Imaging Telescope Array) survey to be achieved by the early 2020s. We bring special attention to modelling the entire chain from photon emission to source detection and cataloguing. Methods. The selection function of galaxy clusters for the upcoming eROSITA mission is investigated by means of extensive and dedicated Monte-Carlo simulations. Employing a combination of accurate instrument characterisation and a state-of-the-art source detection technique, we determine a cluster detection efficiency based on the cluster fluxes and sizes. Results. Using this eROSITA cluster selection function, we find that eROSITA will detect a total of approximately 105 clusters in the extra-galactic sky. This number of clusters will allow eROSITA to put stringent constraints on cosmological models. We show that incomplete assumptions on selection effects, such as neglecting the distribution of cluster sizes, induce a bias in the derived value of cosmological parameters. Conclusions. Synthetic simulations of the eROSITA sky capture the essential characteristics impacting the next-generation galaxy cluster surveys and they highlight parameters requiring tight monitoring in order to avoid biases in cosmological analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.