The dynamic resistance in a slab-like superconductor is calculated, taking into account a field-dependent critical current density. In superconductors carrying DC transport current in an AC external magnetic field, the dynamic resistance causes a transport loss which depends on the amplitude and frequency of this field as well as on the transport current. This resistance is calculated analytically in a critical-state model applied to a superconducting slab in a parallel field. The field has a general periodic time dependence and for the superconductor a relation between critical current and momentary magnetic field as in the Kim model is assumed. The dynamic resistance appears only at field amplitudes larger than the so-called threshold field, which depends on the transport current. The model predictions are compared with experimental results obtained with a Bi-2223/Ag tape at liquid-nitrogen temperature. At small field amplitude and at low transport current, the derived model predicts the observed dependence of dynamic resistance on field amplitude, field frequency and transport current. For a larger field amplitude and simultaneous high transport current, the resistance is found to be larger than the model predicts. This is probably due to the not completely slab-like geometry and/or to a different field dependence of the critical current density in a high AC field.
High-temperature superconducting (HTS) transformers and reactor coils promise decreased weight and volume and higher efficiency. A critical design parameter for such devices is the AC loss in the conductor. The state of the art for AC-loss reduction in HTS power devices is described, starting from the loss in the single HTS tape. Improved tape manufacturing techniques have led to a significant decrease in the magnetization loss. Transport-current loss is decreased by choosing the right operating current and temperature. The role of tape dimensions, filament twist and resistive matrix is discussed and a comparison is made between state-of-the-art BSCCO and YBCO tapes. In transformer and reactor coils the AC loss in the tape is influenced by adjacent tapes in the coil, fields from other coils, overcurrents and higher harmonics. These factors are accounted for by a new AC-loss prediction model. Field components perpendicular to the tape are minimized by optimizing the coil design and by flux guidance pieces. High-current windings are made of Roebel conductors with transposed tapes. The model iteratively finds the temperature distribution in the winding and predicts the onset of thermal instability. We have fabricated and tested several AC windings and used them to validate the model. Now we can confidently use the model as an engineering tool for designing HTS windings and for determining the necessary tape properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.