This work reports yarn pull-out studies of commercially available Kevlar® KM2+ individual yarns coated with metallic layers (copper, aluminum, aluminum nitride and silver) via a directed vapor deposition process. The uncoated control and metal-coated Kevlar® yarns are hand-woven into fabric swatches for quasi-static pull-out experiments. To perform these experiments, a yarn pull-out fixture is custom-designed and fabricated to apply transverse pre-tension to the fabric. Three levels of transverse pre-tensions are studied at 100 N, 200 N, and 400 N. The results showed that both peak pull-out force and energy absorption during the pull-out process increase with increase in transverse pre-tension. All the metal-coated groups showed an approximately 200% increase in peak pull-out force and a 20% reduction in tenacity compared to uncoated control. Furthermore, all the metal-coated groups showed an increase in energy absorption, with aluminum-coated yarns showing the highest increase of 230% compared to control. These results suggest enhanced frictional interactions during yarn pull-out in metal-coated yarns compared to uncoated control as evidenced by the surface roughness profile of individual fibers and inter-yarn frictional calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.