Wound healing is a complex process comprised of overlapping phases and events that work to construct a new, functioning tissue. Mathematical models describe these events and yield understanding about the overall process of wound healing. Generally, these models are focused on only one phase (or a few phases) to explain healing for a specific system. A review of the literature reveals insights as reported on herein regarding the variety of overlapping inputs and outputs for any given type of model. Specifically, these models have been characterized with respect to the phases of healing and their mathematical/physical basis in an effort to shed light on new opportunities for model development. Though all phases of wound healing have been modeled, previous work has focused mostly on the proliferation and related contraction phases of healing with fewer results presented regarding other phases. As an example, a gap in the literature has been identified regarding models to describe facilitated wound closure techniques (e.g., suturing and its effect on resultant scarring). Thus, an opportunity exists to create models that tie the transient processes of wound healing, such as cell migration, to resultant scarring when considering tension applied to skin with given suturing techniques.
Steady-state lymph-to-plasma concentration ratios (L/Ps) of neutral dextrans, cationic DEAE dextrans, and endogenous proteins were determined under normal and increased permeability conditions in six unanesthetized yearling sheep prepared with chronic lung lymph fistulas. Fluorescent dextrans with radii ranging from 1 to 30 nm were intravenously infused, and after 24 h, perilla ketone (PK) was given to alter permeability while the dextran infusion was maintained. Plasma and lymph samples were collected before and after PK administration and analyzed for dextran and protein concentrations after high-performance liquid chromatography size separation. Under both baseline and increased permeability conditions, DEAE dextrans had higher L/Ps than neutral dextrans of similar size but lower L/Ps than proteins of similar size. Comparison of L/Ps before and after PK revealed that the percentage change in permeability for neutral and DEAE dextrans was significantly larger than that for proteins. These results suggest that 1) the pulmonary microvascular barrier behaves as a net negative barrier, 2) some transport mechanisms for proteins and dextrans are different, and 3) neutral and cationic dextrans are more sensitive markers than proteins of the same size for assessing changes in pulmonary capillary permeability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.