The structure and bonding of molecular furan, C 4 H 4 O, on Pd(111) has been investigated using density functional theory (DFT) calculations and the results compared with those of a recent experimental investigation using scanned-energy mode photoelectron diffraction (PhD). The DFT results confirm the orientation of the molecular plane to be essentially parallel to the surface and show a clear energetic preference for one of the two possible structures identified in the PhD study, namely that with the molecule centred over the hollow sites of the surface. Two slightly different geometries at the hollow sites are found to be essentially energetically equivalent; in both cases, one Pd surface atom bonds to two C atoms, while two other Pd atoms each bond to one C atom. These structures differ in that in one case the pair of C atoms bonding to a single Pd atom are both β-C (C atoms not bonded to O in the furan molecule), whereas in the second case this pair of C atoms comprises one β-C and one α-C (adjacent to the O atom in furan). In both structures the C-Pd bonding is accompanied by displacements of the H and O atoms away from the surface and out of the molecular plane and local C-Pd coordination consistent with a rehybridisation of the C bonding to sp 3 character.
A strong ≈10 kHz mode is detected in both potential and density fluctuations of the edge plasma of the MAST tokamak using a reciprocating probe. The mode is radially localized, with outer limit ≈2 cm inside the separatrix, and is affected on application of resonant magnetic perturbations generated by external coils. A shift in frequency with plasma rotation is found, and a rapid suppression of the mode is observed when it can couple to the imposed n = 3 magnetic perturbations in the rotating frame. Non-linear coupling to high wave number turbulence is evident, and an increase in power of turbulence fluctuations is seen after suppression. These observations are then interpreted in the context of known low-frequency plasma modes present in the toroidal configuration. A possibility that the observed mode is a geodesic acoustic mode is considered and motivated by observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.