We present a new and complete library of synthetic spectra for modeling the component of emission that is reflected from an illuminated accretion disk.The spectra were computed using an updated version of our code xillver that incorporates new routines and a richer atomic data base. We offer in the form of a table model an extensive grid of reflection models that cover a wide range of parameters. Each individual model is characterized by the photon index Γ of the illuminating radiation, the ionization parameter ξ at the surface of the disk (i.e., the ratio of the X-ray flux to the gas density), and the iron abundance A Fe relative to the solar value. The ranges of the parameters covered are: 1.2 ≤ Γ ≤ 3.4, 1 ≤ ξ ≤ 10 4 , and 0.5 ≤ A Fe ≤ 10. These ranges capture the physical conditions typically inferred from observations of active galactic nuclei, and also stellarmass black holes in the hard state. This library is intended for use when the thermal disk flux is faint compared to the incident power-law flux. The models are expected to provide an accurate description of the Fe K emission line, which is the crucial spectral feature used to measure black hole spin. A total of 720 reflection spectra are provided in a single FITS file 1 suitable for the analysis of X-ray observations via the atable model in xspec. Detailed comparisons with previous reflection models illustrate the improvements incorporated in this version of xillver. 1997; Dauser et al. 2013). The presence of this dense (n H 10 12 cm −3 ), warm (T ∼ 10 5 − 10 7 K), and optically-thick (τ T 1) medium is also supported by the detection of atomic features from several ions. These and other features constitute an important component of the X-ray -5spectrum observed from accreting sources, resulting from the reprocessing of radiation by the material in the disk. This component is commonly referred to as reflection, in the sense that it is the result of radiation that is returned from the accretion disk by fluorescence or electron scattering. The current paradigm is that the original power-law radiation irradiates the surface of the accretion disk. The X-ray photons then interact with the material producing diverse atomic features. These can be produced both via absorption (mostly in form of edges), and emission (in form of fluorescence lines and radiative recombination continua, RRC). Therefore, the reflection component provides direct information about structure, temperature, ionization stage, and composition of the gas in the accretion disk.The presence of the Fe K-shell fluorescence emission and the absorption K-edge observed in the 6 − 8 keV energy range are recognized as strong evidence for reflection.X-ray photons that are photoelectrically absorbed have enough energy to remove a 1s electron from its K-shell, leaving it in a quasi-bound state above the continuum (autoionizing state). The K-hole is then filled by an electron, and the energy difference can be released by emitting a second electron (Auger process), or by the emission of a K-shell photon....
X-ray irradiation of the accretion disc leads to strong reflection features, which are then broadened and distorted by relativistic effects. We present a detailed, general relativistic approach to model this irradiation for different geometries of the primary X-ray source. These geometries include the standard point source on the rotational axis as well as more jet-like sources, which are radially elongated and accelerating. Incorporating this code in the RELLINE model for relativistic line emission, the line shape for any configuration can be predicted. We study how different irradiation geometries affect the determination of the spin of the black hole. Broad emission lines are produced only for compact irradiating sources situated close to the black hole. This is the only case where the black hole spin can be unambiguously determined. In all other cases the line shape is narrower, which could either be explained by a low spin or an elongated source. We conclude that for those cases and independent of the quality of the data, no unique solution for the spin exists and therefore only a lower limit of the spin value can be given.
MAGIC is a system of two Imaging Atmospheric Cherenkov Telescopes located in the Canary island of La Palma, Spain. During summer 2011 and 2012 it underwent a series of upgrades, involving the exchange of the MAGIC-I camera and its trigger system, as well as the upgrade of the readout system of both telescopes. We use observations of the Crab Nebula taken at low and medium zenith angles to assess the key performance parameters of the MAGIC stereo system. For low zenith angle observations, the standard trigger threshold of the MAGIC telescopes is ∼ 50 GeV. The integral sensitivity for point-like sources with Crab Nebula-like spectrum above 220 GeV is (0.66 ± 0.03)% of Crab Nebula flux in 50 h of observations. The angular resolution, defined as the σ of a 2-dimensional Gaussian distribution, at those energies is ≲ 0.07°, while the energy resolution is 16%. We also re-evaluate the effect of the systematic uncertainty on the data taken with the MAGIC telescopes after the upgrade. We estimate that the systematic uncertainties can be divided in the following components: < 15% in energy scale, 11%-18% in flux normalization and ± 0.15 for the energy spectrum power-law slope
We present new models for illuminated accretion disks, their structure and reprocessed emission. We consider the effects of incident X-rays on the surface of an accretion disk by solving simultaneously the equations of radiative transfer, energy balance and ionization equilibrium over a large range of column densities. We assume plane-parallel geometry and azimuthal symmetry, such that each calculation corresponds to a ring at a given distance from the central object. Our models include recent and complete atomic data for K-shell processes of the iron and oxygen isonuclear sequences. We examine the effect on the spectrum of fluorescent Kα line emission and absorption in the emitted spectrum. We also explore the dependence of the spectrum on the strength of the incident X-rays and other input parameters, and discuss the importance of Comptonization on the emitted spectrum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.