The progress in molecular biology has revolutionized systemic treatment of advanced non-small-cell lung cancer (NSCLC) from conventional chemotherapy to a treatment stratified by histology and genetic aberrations. Tumors harboring a translocation of the anaplastic-lymphoma-kinase (ALK) gene constitute a distinct genetic and clinico-pathologic NSCLC subtype with patients with ALK-positive disease being at a higher risk for developing brain metastases. Due to the introduction of effective targeted therapy with ALK-inhibitors, today, patients with advanced ALK-positive NSCLC achieve high overall response rates and remain progression-free for long time intervals. Moreover, ALK-inhibitors seem to exhibit efficacy in the treatment of brain metastases. In the light of this, it needs to be discussed how treatment algorithms for managing patients with brain metastases should be modified. By integrating systemic ALK-inhibitor therapy, radiotherapy, in particular whole brain radiotherapy might be postponed deferring potential long-term impairment by neurocognitive deficits to a later time point in the course of the disease. An early treatment of asymptomatic brain metastases might offer patients a longer time without impairment of cerebral symptoms or radiotherapeutic interventions. Based on an updated extensive review of the literature this article provides an overview on the epidemiology and the treatment of patients’ brain metastases. It describes the specifics of ALK-positive disease and proposes an algorithm for the treatment of patients with advanced ALK-positive NSCLC and brain metastases.
Introduction: The impact of TP53 co-mutations in EGFR mutated patients on PFS and OS is controversial. Different classifications of TP53 mutations with respect to functional and potential clinical impact have been published. Therefore, we retrospectively analyzed the impact of TP53 co-mutations on ORR, PFS and OS in a cohort of EGFR mutated NSCLC IV patients (UICC 7) using different classifications of TP53 mutations. Methods: 75 EGFR mutated NSCLC IV patients homogeneously treated with 1st line EGFR TKI were analyzed for TP53 co-mutations. TP53 mutations were classified according to three different types of classifications. The endpoints ORR, PFS and OS were investigated. Results: TP53 co-mutations were found in 29/59 patients (49.2%). TP53 comutations were a statistically significant independent negative predictive factor for ORR, PFS and OS. TP53 co-mutations were associated with inferior mPFS and mOS: mPFS/mOS 12 vs. 18/24 vs. 42 months for non-disruptive/disruptive mutations vs. WT (p < 0.004)/(p < 0.009), 11 vs. 17/23 vs. 42 months for pathogenic vs. nonpathogenic/WT (p < 0.001)/(p < 0.001), and 7 vs. 12 vs. 18/12 vs. 28 vs. 42 months for exon 8 vs. non-exon 8 vs. WT (p < 0.001)/(p < 0.002). Conclusions: TP53 co-mutations are frequent in EGFR mt+ NSCLC and have a strong negative impact on all clinical endpoints of TKI therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.