The free vibrations of a linear conservative system with multiple loading parameters are studied, attention being restricted to pure eigenvalue problems. It is shown that the smallest frequency and external loading parameters of such a system constitute a strictly convex (synclastic) surface which cannot have convexity toward the origin of the “parameter space.” It is further proved that in the case of systems with one degree of freedom only, the surface takes the form of a plane. The practical implications of these results regarding the estimation of the frequencies and/or the stability boundary of the system are discussed. Thus it is observed that, on the basis of the established theorems, lower bounds to the frequencies at any stage of external loading and/or upper bounds to the stability boundary are readily obtainable. A two-degree-of-freedom illustrative example is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.