Cardiopulmonary resuscitation (CPR) artifacts caused by chest compressions and ventilations interfere with the rhythm diagnosis of automated external defibrillators (AED). CPR must be interrupted for a reliable diagnosis. However, pauses in chest compressions compromise the defibrillation success rate and reduce perfusion of vital organs. The removal of the CPR artifacts would enable compressions to continue during AED rhythm analysis, thereby increasing the likelihood of resuscitation success. We have estimated the CPR artifact using only the frequency of the compressions as additional information to model it. Our model of the artifact is adaptively estimated using a least mean-square (LMS) filter. It was tested on 89 shockable and 292 nonshockable ECG samples from real out-of-hospital sudden cardiac arrest episodes. We evaluated the results using the shock advice algorithm of a commercial AED. The sensitivity and specificity were above 95% and 85%, respectively, for a wide range of working conditions of the LMS filter. Our results show that the CPR artifact can be accurately modeled using only the frequency of the compressions. These can be easily registered after small changes in the hardware of the CPR compression pads.
Interruptions in cardiopulmonary resuscitation (CPR) compromise defibrillation success. However, CPR must be interrupted to analyze the rhythm because although current methods for rhythm analysis during CPR have high sensitivity for shockable rhythms, the specificity for nonshockable rhythms is still too low. This paper introduces a new approach to rhythm analysis during CPR that combines two strategies: a state-of-the-art CPR artifact suppression filter and a shock advice algorithm (SAA) designed to optimally classify the filtered signal. Emphasis is on designing an algorithm with high specificity. The SAA includes a detector for low electrical activity rhythms to increase the specificity, and a shock/no-shock decision algorithm based on a support vector machine classifier using slope and frequency features. For this study, 1185 shockable and 6482 nonshockable 9-s segments corrupted by CPR artifacts were obtained from 247 patients suffering out-of-hospital cardiac arrest. The segments were split into a training and a test set. For the test set, the sensitivity and specificity for rhythm analysis during CPR were 91.0% and 96.6%, respectively. This new approach shows an important increase in specificity without compromising the sensitivity when compared to previous studies.
Survival from out-of-hospital cardiac arrest depends largely on two factors: early cardiopulmonary resuscitation (CPR) and early defibrillation. CPR must be interrupted for a reliable automated rhythm analysis because chest compressions induce artifacts in the ECG. Unfortunately, interrupting CPR adversely affects survival. In the last twenty years, research has been focused on designing methods for analysis of ECG during chest compressions. Most approaches are based either on adaptive filters to remove the CPR artifact or on robust algorithms which directly diagnose the corrupted ECG. In general, all the methods report low specificity values when tested on short ECG segments, but how to evaluate the real impact on CPR delivery of continuous rhythm analysis during CPR is still unknown. Recently, researchers have proposed a new methodology to measure this impact. Moreover, new strategies for fast rhythm analysis during ventilation pauses or high-specificity algorithms have been reported. Our objective is to present a thorough review of the field as the starting point for these late developments and to underline the open questions and future lines of research to be explored in the following years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.