The main aim of the paper is to find a control method for a multilevel matrix converter (MMC) that enables the elimination of common mode voltage (CMV). The method discussed in the paper is based on a selection of converter configurations and the instantaneous output voltages of MMC represented by rotating space vectors. The choice of appropriate configurations is realized by the use of space vector modulation (SVM), with the application of Venturini modulation functions. A multilevel matrix converter, which utilizes a multilevel structure in a traditional matrix converter (MC), can achieve an improved output voltage waveform quality, compared with the output voltage of MC. The carrier-based implementation of SVM is presented in this paper. The carrier-based implementation of SVM avoids any trigonometric and division operations, which could be required in a general space vector approach to the SVM method. With use of the proposed control method, a part of the high-frequency output voltage distortion components is eliminated. The application of the presented modulation method eliminates the CMV in MMC what is presented in the paper. Additionally, the possibility to control the phase shift between the appropriate input and output phase voltages is obtained by the presented control strategy. The results of the simulation and experiment confirm the utility of the proposed modulation method.
The matrix converter (MC) is the n-phase input and m-phase output power electronic system. To synthesis the controllable sinusoidal output voltage and input current with controllable input displacement angle, the pulse width modulation method (PWM) is used in the MC. During the modulation process a problem of the common mode voltage (CMV) exists. The elimination of the CMV in three-to-six-phase MC by usage of only rotating voltage space vectors is analyzed in the paper. The carrier based implementation of the space vector modulation (SVM) with Venturini modulation functions is applied to the control of the three-to-six-phase MC. Entire elimination of the CMV in three-to-six-phase MC is presented in the paper. The simulation and experiment results confirm utility of the proposed modulation method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.