Background:Humans are exposed to thousands of man-made chemicals in the environment. Some chemicals mimic natural endocrine hormones and, thus, have the potential to be endocrine disruptors. Most of these chemicals have never been tested for their ability to interact with the estrogen receptor (ER). Risk assessors need tools to prioritize chemicals for evaluation in costly in vivo tests, for instance, within the U.S. EPA Endocrine Disruptor Screening Program.Objectives:We describe a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project) and demonstrate the efficacy of using predictive computational models trained on high-throughput screening data to evaluate thousands of chemicals for ER-related activity and prioritize them for further testing.Methods:CERAPP combined multiple models developed in collaboration with 17 groups in the United States and Europe to predict ER activity of a common set of 32,464 chemical structures. Quantitative structure–activity relationship models and docking approaches were employed, mostly using a common training set of 1,677 chemical structures provided by the U.S. EPA, to build a total of 40 categorical and 8 continuous models for binding, agonist, and antagonist ER activity. All predictions were evaluated on a set of 7,522 chemicals curated from the literature. To overcome the limitations of single models, a consensus was built by weighting models on scores based on their evaluated accuracies.Results:Individual model scores ranged from 0.69 to 0.85, showing high prediction reliabilities. Out of the 32,464 chemicals, the consensus model predicted 4,001 chemicals (12.3%) as high priority actives and 6,742 potential actives (20.8%) to be considered for further testing.Conclusion:This project demonstrated the possibility to screen large libraries of chemicals using a consensus of different in silico approaches. This concept will be applied in future projects related to other end points.Citation:Mansouri K, Abdelaziz A, Rybacka A, Roncaglioni A, Tropsha A, Varnek A, Zakharov A, Worth A, Richard AM, Grulke CM, Trisciuzzi D, Fourches D, Horvath D, Benfenati E, Muratov E, Wedebye EB, Grisoni F, Mangiatordi GF, Incisivo GM, Hong H, Ng HW, Tetko IV, Balabin I, Kancherla J, Shen J, Burton J, Nicklaus M, Cassotti M, Nikolov NG, Nicolotti O, Andersson PL, Zang Q, Politi R, Beger RD, Todeschini R, Huang R, Farag S, Rosenberg SA, Slavov S, Hu X, Judson RS. 2016. CERAPP: Collaborative Estrogen Receptor Activity Prediction Project. Environ Health Perspect 124:1023–1033; http://dx.doi.org/10.1289/ehp.1510267
BackgroundSafety assessment for repeated dose toxicity is one of the largest challenges in the process to replace animal testing. This is also one of the proof of concept ambitions of SEURAT-1, the largest ever European Union research initiative on alternative testing, co-funded by the European Commission and Cosmetics Europe. This review is based on the discussion and outcome of a workshop organized on initiative of the SEURAT-1 consortium joined by a group of international experts with complementary knowledge to further develop traditional read-across and include new approach data.ObjectivesThe aim of the suggested strategy for chemical read-across is to show how a traditional read-across based on structural similarities between source and target substance can be strengthened with additional evidence from new approach data—for example, information from in vitro molecular screening, “-omics” assays and computational models—to reach regulatory acceptance.MethodsWe identified four read-across scenarios that cover typical human health assessment situations. For each such decision context, we suggested several chemical groups as examples to prove when read-across between group members is possible, considering both chemical and biological similarities.ConclusionsWe agreed to carry out the complete read-across exercise for at least one chemical category per read-across scenario in the context of SEURAT-1, and the results of this exercise will be completed and presented by the end of the research initiative in December 2015.CitationBerggren E, Amcoff P, Benigni R, Blackburn K, Carney E, Cronin M, Deluyker H, Gautier F, Judson RS, Kass GE, Keller D, Knight D, Lilienblum W, Mahony C, Rusyn I, Schultz T, Schwarz M, Schüürmann G, White A, Burton J, Lostia AM, Munn S, Worth A. 2015. Chemical safety assessment using read-across: assessing the use of novel testing methods to strengthen the evidence base for decision making. Environ Health Perspect 123:1232–1240; http://dx.doi.org/10.1289/ehp.1409342
Part of the hard resin of hops is capable of forming an insoluble lead salt and is termed the α hard resin. The remainder is termed the β hard resin and consists partially of xanthohumol. Both fractions have been examined further by ion‐exchange chromatography, and hulupinic acid has been characterized as a component of the a hard resin. The latter increases as hops age as does the amount of hulupinic acid.
The purpose of this study was to explore the use of detailed biological data in combination with a statistical learning method for predicting the CYP1A2 and CYP2D6 inhibition. Data were extracted from the Aureus-Pharma highly structured databases which contain precise measures and detailed experimental protocol concerning the inhibition of the two cytochromes. The methodology used was Recursive Partitioning, an easy and quick method to implement. The building of models was preceded by the evaluation of the chemical space covered by the datasets. The descriptors used are available in the MOE software suite. The models reached at least 80% of Accuracy and often exceeded this percentage for the Sensitivity (Recall), Specificity, and Precision parameters. CYP2D6 datasets provided 11 models with Accuracy over 80%, while CYP1A2 datasets counted 5 high-accuracy models. Our models can be useful to predict the ADME properties during the drug discovery process and are indicated for high-throughput screening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.