We report the crystal structure, morphology and optical properties of the Zn 1-x Mn x O nanoparticles with nominal composition (x = 0.00, 0.05, 0.10, 0.15 & 0.20) were synthesized by sol-gel route. The crystal structure analysis was carried out by X-ray diffraction technique (XRD), morphology and particle size was investigated using Transition electron microscopy (TEM), Optical characterization was performed using UV-VIS technique. The XRD studies show that samples have wurtzite (hexagonal) crystal structure. In addition to this XRD results also indicate no extra impurity or secondary phases are observed. The lattice parameters a and c of Zn 1-x Mn x O nanoparticles increase with increasing Mn content which indicates that Mn 2+ ions go to Zn 2+ ions in the ZnO lattice. The atomic packing fraction (APF) increase of Mn doped ZnO nanoparticles with increasing Mn content. TEM microphotographs show that the pure and 10% Mn doped ZnO nanoparticles are in spherical shape and their average particle size of pure and 10% Mn doped ZnO nanoparticles are found in the range of 20-60 nm. The optical energy band gap decreases with increasing Mn concentration, it may be owing to Mn clustering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.