Fast Radio Bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances [1][2][3][4][5][6][7][8] . Previous follow-up observations have failed to find additional bursts at the same dispersion measures (i.e. integrated column density of free electrons between source and telescope) and sky position as the original detections 9 . The apparent non-repeating nature of the fast radio bursts has led several authors to hypothesise that they originate in cataclysmic astrophysical events 10 . Here we report the detection of ten additional bursts from the direction of FRB 121102, using the 305-m Arecibo telescope. These new bursts have dispersion measures and sky positions consistent with the original burst 4 . This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or shorter. While there may be multiple physical origins for the population of fast radio bursts, the repeat bursts with high dispersion measure and variable spectra specifically seen from FRB 121102 support models that propose an origin in a young, highly magnetised, extragalactic neutron star 11,12 .2 FRB 121102 was discovered 4 in the PALFA survey, a deep search of the Galactic plane at 1.4 GHz for radio pulsars and fast radio bursts (FRBs) using the 305-m William E. Gordon Telescope at the Arecibo Observatory and the 7-beam Arecibo L-band Feed Array (ALFA) 13,14 . The observed dispersion measure (DM) of the burst is roughly three times the maximum value expected along this line of sight in the NE2001 model 15 of Galactic electron density, i.e. β DM ≡ DM FRB /DM Gal Max ∼ 3, suggesting an extragalactic origin.Initial Arecibo follow-up observations were limited in both dwell time and sky coverage and resulted in no detection of additional bursts 4 . In 2015 May and June we carried out more extensive follow-up using Arecibo, covering a ∼ 9 radius with a grid of six ALFA pointings around the then-best sky position of FRB 121102 (Figure 1 and Extended Data Table 1 and 2). As described in the Methods, high-time-resolution, total intensity spectra were recorded, and the data were processed using standard radio-frequency interference (RFI) excision, dispersion removal, and single-pulse-search algorithms implemented in the PRESTO software suite and associated data reduction pipelines 14,16,17 .We detected 10 additional bursts from FRB 121102 in these observations. The burst properties, and those of the initial FRB 121102 burst, are listed in Table 1. The burst intensities are shown in Figure 2. No other periodic or single-pulse signals of a plausible astrophysical origin were detected at any other DM. Until the source's physical nature is clear, we continue to refer to it as FRB 121102 and label each burst chronologically starting with the o...
We report on Bayesian estimation of the radius, mass, and hot surface regions of the massive millisecond pulsar PSR J0740+6620, conditional on pulse-profile modeling of Neutron Star Interior Composition Explorer X-ray Timing Instrument event data. We condition on informative pulsar mass, distance, and orbital inclination priors derived from the joint North American Nanohertz Observatory for Gravitational Waves and Canadian Hydrogen Intensity Mapping Experiment/Pulsar wideband radio timing measurements of Fonseca et al. We use XMM-Newton European Photon Imaging Camera spectroscopic event data to inform our X-ray likelihood function. The prior support of the pulsar radius is truncated at 16 km to ensure coverage of current dense matter models. We assume conservative priors on instrument calibration uncertainty. We constrain the equatorial radius and mass of PSR J0740+6620 to be -+ 10 0.06 0.05 ( [ ])for each hot region. All software for the X-ray modeling framework is open-source and all data, model, and sample information is publicly available, including analysis notebooks and model modules in the Python language. Our marginal likelihood function of mass and equatorial radius is proportional to the marginal joint posterior density of those parameters (within the prior support) and can thus be computed from the posterior samples. Unified Astronomy Thesaurus concepts: Millisecond pulsars (1062); Rotation powered pulsars (1408); Pulsars (1306); Radio pulsars (1353); X-ray astronomy (1810); Neutron stars (1108)
FRB 121102 is the only known repeating fast radio burst source. Here we analyze a wide-frequency-range (1 − 8 GHz) sample of high-signal-to-noise, coherently dedispersed bursts detected using the Arecibo and Green Bank telescopes. These bursts reveal complex time-frequency structures that include sub-bursts with finite bandwidths. The frequency-dependent burst structure complicates the determination of a dispersion measure (DM); we argue that it is appropriate to use a DM metric that maximizes frequency-averaged pulse structure, as opposed to peak signal-to-noise, and find DM = 560.57 ± 0.07 pc cm −3 at MJD 57644. After correcting for dispersive delay, we find that the sub-bursts have characteristic frequencies that typically drift lower at later times in the total burst envelope. In the 1.1 − 1.7 GHz band, the ∼ 0.5 − 1-ms sub-bursts have typical bandwidths ranging from 100 − 400 MHz, and a characteristic drift rate of ∼ 200 MHz/ms towards lower frequencies. At higher radio frequencies, the sub-burst bandwidths and drift rate are larger, on average. While these features could be intrinsic to the burst emission mechanism, they could also be imparted by propagation effects in the medium local to the source. Comparison of the burst DMs with previous values in the literature suggests an increase of ∆DM ∼ 1 − 3 pc cm −3 in 4 years, though this could be a stochastic variation as opposed to a secular trend. This implies changes in the local medium or an additional source of frequency-dependent delay. Overall, the results are consistent with previously proposed scenarios in which FRB 121102 is embedded in a dense nebula.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.