We report a direct observation of the intrinsic magnetization behavior of Au in thiol-capped gold nanoparticles with permanent magnetism at room temperature. Two element specific techniques have been used for this purpose: X-ray magnetic circular dichroism on the L edges of the Au and 197Au Mössbauer spectroscopy. Besides, we show that silver and copper nanoparticles synthesized by the same chemical procedure also present room-temperature permanent magnetism. The observed permanent magnetism at room temperature in Ag and Cu dodecanethiol-capped nanoparticles proves that the physical mechanisms associated to this magnetization process can be extended to more elements, opening the way to new and still not-discovered applications and to new possibilities to research basic questions of magnetism.
Novel octahedral single-crystals of magnetite with non-fluctuating magnetic moments exhibit outstanding heat loss, both in physiological media and when immobilized in agar.
1D assemblies of magnetic nanoparticles are of great potential for designing novel nanostructured materials with enhanced collective magnetic properties. In that challenging context, a new assembly strategy is presented to prepare chains of magnetic nanoparticles that are well‐defined in structure and in spatial arrangement. The 1D assembly of iron oxide nanoparticles onto a substrate is controlled using “click” chemistry under an external magnetic field. Co‐aligned single nanoparticle chains separated by regular distances can be obtained by this strategy. The intrinsic high uniaxial anisotropy results in a strong enhancement of magnetic collective properties in comparison to 2D monolayers or isolated nanoparticles. In contrast to the intensively studied bundle chains of nanoparticles, the finely tuned chain structure reported here allows evidencing a first order intrachain dipolar interaction and a second order interchain magnetic coupling. This study offers new insights into the collective magnetic properties of highly anisotropic particulate assemblies which have been investigated by combining superconducting quantum interference device magnetometry, magnetic force microscopy, and ferromagnetic resonance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.