Porous TiNi shape‐memory alloy (TiNi SMA) bodies with controlled pore structure were produced from the (Ti+Ni) powder mixture by self‐propagating high‐temperature synthesis (SHS) method. The effect of processing variables such as the kind of starting powders, ignition temperature and preheating schedule on the behavior of combustion wave propagation, the formation of phases and pore structure was investigated. The relationship between pore structure and mechanical properties was also investigated. An in vivo test was performed to evaluate bone tissue response and histocompatibility of porous TiNi SMA using 15 New Zealand white rabbits. No apparent adverse reactions such as inflammation and foreign body reaction were noted on or around all implanted porous TiNi SMA blocks. Bone ingrowth was found in the pore space of all implanted blocks.
The in situ formation of TiB 2 particulates via an interface reaction between Ti and FeB powders was studied. The effects of mechanical activation by high-energy milling on the decomposition of TiH 2 and the interface reactions between Ti and FeB powders to form TiB 2 were investigated. Powder mixtures were fabricated using planetary ball-milling under various milling conditions. The specific ball-milling energy was calculated from the measured electrical power consumption during milling process. High specific milling energy (152.6 kJ/g) resulted in a size reduction and homogeneous dispersion of constituent powders. This resulted in a decrease in the decomposition temperature of TiH 2 and an increase in the formation reaction of TiB 2 particulates in the Fe matrix, resulting in a homogeneous microstructure of nanoscale TiB 2 evenly distributed within the Fe matrix. In contrast, the powder mixture milled with low specific milling energy (36.5 kJ/g) showed an inhomogeneous microstructure composed of relatively large Fe-Fe 2 B particles surrounded by a thin layer of Fe-TiB 2 within a finely dispersed Fe-TiB 2 matrix region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.