A study of the temperature and stoichiometry dependence of diamond synthesis in low pressure premixed acetylene-oxygen flames is presented. A specially designed low pressure flat flame operating at 40 Torr is employed to deposit diamond films uniformly over areas of at least 2 cm2. Under optimized conditions of substrate temperatures and flame equivalence ratios, high quality translucent diamond that is well faceted is synthesized exhibiting first-order Raman fullwidths (half maximum) of about 2.5 cm−1. Diamond growth rates under these optimum conditions are approximately 4 μm/h. The film growth rate is found to drop off substantially at high substrate temperatures, with little or no carbon deposited beyond a temperature of 1070 °C. The growth behavior in response to changes in flame equivalence ratio and substrate temperature is discussed in terms of the possible role that oxygen-containing species may have on surface chemistry. The results described here are also used to project a base cost for manufacturing diamond under these process conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.