Single-image haze removal is a long-standing hurdle for computer vision applications. Several works have been focused on transferring advances from image classification, detection, and segmentation to the niche of image dehazing, primarily focusing on contrastive learning and knowledge distillation. However, these approaches prove computationally expensive, raising concern regarding their applicability to on-the-edge use-cases. This work introduces a simple, lightweight, and efficient framework for single-image haze removal, exploiting rich "darkknowledge" information from a lightweight pre-trained super-resolution model via the notion of heterogeneous knowledge distillation. We designed a feature affinity module to maximize the flow of rich feature semantics from the super-resolution teacher to the student dehazing network. In order to evaluate the efficacy of our proposed framework, its performance as a plug-and-play setup to a baseline model is examined. Our experiments are carried out on the RESIDE-Standard dataset to demonstrate the robustness of our framework to the synthetic and real-world domains. The extensive qualitative and quantitative results provided establish the effectiveness of the framework, achieving gains of upto 15% (PSNR) while reducing the model size by ∼20 times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.