Proton inelastic scattering off a neutron halo nucleus, 11 Li, has been studied in inverse kinematics at the IRIS facility at TRIUMF. The aim was to establish a soft dipole resonance and to obtain its dipole strength. Using a high quality 66 MeV 11 Li beam, a strongly populated excited state in 11 Li was observed at E x =0.80 ± 0.02 MeV with a width of Γ = 1.15 ± 0.06 MeV. A DWBA (distorted-wave Born approximation) analysis of the measured differential cross section with isoscalar macroscopic form factors leads to conclude that this observed state is excited in an electric dipole (E1) transition. Under the assumption of isoscalar E1 transition, the strength is evaluated to be ex- * Corresponding author.
The elusive β − p + decay was observed in 11 Be by directly measuring the emitted protons and their energy distribution for the first time with the prototype Active Target Time Projection Chamber (pAT-TPC) in an experiment performed at ISAC-TRIUMF. The measured β − p + branching ratio is orders of magnitude larger than any previous theoretical model predicted. This can be explained by the presence of a narrow resonance in 11 B above the proton separation energy.
Type-I x-ray bursts can reveal the properties of an accreting neutron star system when compared with astrophysics model calculations. However, model results are sensitive to a handful of uncertain nuclear reaction rates, such as 22 Mgðα;pÞ. We report the first direct measurement of 22 Mgðα;pÞ, performed with the Active Target Time Projection Chamber. The corresponding astrophysical reaction rate is orders of magnitude larger than determined from a previous indirect measurement in a broad temperature range. Our new measurement suggests a less-compact neutron star in the source GS1826-24.
How does nature hold together protons and neutrons to form the wide variety of complex nuclei in the universe? Describing many-nucleon systems from the fundamental theory of quantum chromodynamics has been the greatest challenge in answering this question. The chiral effective field theory description of the nuclear force now makes this possible but requires certain parameters that are not uniquely determined. Defining the nuclear force needs identification of observables sensitive to the different parametrizations. From a measurement of proton elastic scattering on 10 C at TRIUMF and ab initio nuclear reaction calculations we show that the shape and magnitude of the measured differential cross section is strongly sensitive to the nuclear force prescription.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.