The concentration of carbon dioxide in Earth's atmosphere may double by the end of the 21st century. The response of higher plants to a carbon dioxide doubling often includes a decline in their nitrogen status, but the reasons for this decline have been uncertain. We used five independent methods with wheat and Arabidopsis to show that atmospheric carbon dioxide enrichment inhibited the assimilation of nitrate into organic nitrogen compounds. This inhibition may be largely responsible for carbon dioxide acclimation, the decrease in photosynthesis and growth of plants conducting C(3) carbon fixation after long exposures (days to years) to carbon dioxide enrichment. These results suggest that the relative availability of soil ammonium and nitrate to most plants will become increasingly important in determining their productivity as well as their quality as food.
Critical for predicting the future of primary productivity is a better understanding of plant responses to rising atmospheric carbon dioxide (CO2) concentration. This review considers recent results on the role of the inorganic nitrogen (N) forms nitrate (NO3-) and ammonium (NH4+) in determining the responses of wheat and Arabidopsis to elevated atmospheric CO2 concentration. Here, we identify four key issues: (i) the possibility that different plant species respond similarly to elevated CO2 if one accounts for the N form that they are using; (ii) the major influence that plant-soil N interactions have on plant responses to elevated CO2; (iii) the observation that elevated CO2 may favor the uptake of one N form over others; and (iv) the finding that plants receiving NH4+ nutrition respond more positively to elevated CO2 than those receiving NO3- nutrition because elevated CO2 inhibits the assimilation of NO3- in shoots of C3 plants. We conclude that the form and amount of N available to plants from the rhizosphere and plant preferences for the different N forms are essential for predicting plant responses to elevated CO2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.