The influence of an Escherichia coli-derived phytase, on nutrient utilization was investigated in broilers fed starter diets containing different concentrations of phytate. The study was conducted as a 3 x 4 factorial arrangement of treatments with 3 concentrations of phytic acid (10.4, 11.8, and 13.6 g/kg; equivalent to 2.8, 3.3, and 3.8 g of phytate P/kg) and phytase (0, 500, 750, and 1,000 FTU/kg). One unit of phytase (FTU) is defined as the quantity of enzyme that releases 1 micromol of inorganic phosphorus/min from 0.00015 mol/L of sodium phytate at pH 5.5 at 37 degrees C. The dietary phytic acid concentrations were manipulated by the inclusion of rice bran. Increasing dietary concentrations of phytic acid resulted in reductions (P < 0.01) in AME. Phytase additions tended to increase AME (P = 0.07), regardless of dietary phytate concentrations. Apparent ileal digestibility coefficients of protein and most amino acids were influenced by phytate (P < 0.05 to 0.001) and phytase (P < 0.001). Phytase improved ileal protein and amino acid digestibility at all phytate concentrations, but the trend in responses to increasing phytase additions was different at different phytate concentrations as shown by significant phytate x phytase interactions (P < 0.01 to 0.001). At the lowest phytate concentration, the ileal digestibility coefficients increased with increasing phytase supplementation. At the medium and high phytate concentrations, the greatest responses were observed at 500 FTU/kg of phytase, with little improvement attributable to further additions. Ileal digestibility of P was lowered (P < 0.01) by increasing phytate concentrations and increased (P < 0.001) with increasing additions of phytase. A significant phytate x phytase interaction (P < 0.05) was also observed, where the improvements in P absorption with added phytase were found to be greater at high phytate concentrations. These data demonstrate the anti-nutritive effects of phytic acid and the potential of microbial phytase to improve energy utilization and the availability of P and amino acids in broilers fed starter diets.
Three experiments were conducted to evaluate P bioavailability, growth performance, and nutrient balance in pigs fed high available P (HAP) corn with or without phytase. The bioavailability of P in normal and HAP corn relative to monosodiumphosphate (MSP) for pigs was assessed in Exp. 1. In a randomized complete block design, 96 pigs (average initial BW 9.75 kg) were fed eight diets for 28 d. The reference and test diets were formulated by adding P as MSP, HAP, or normal corn at 0, 0.75, or 1.5 g/kg to a corn-starch-soybean meal basal diet (2.5 g/kg P) at the expense of cornstarch. Plasma inorganic P concentration responded linearly (P < 0.05) to supplemental P intake. Estimates of P bioavailability from HAP andnormal corn when plasma P was regressed on supplemental P intake were 46 and 33%, respectively. In Exp. 2 and 3, pigs were fed corn-soybean meal-based diets containing HAP corn or normal corn and 0 or 600 units of phytase per kilogram in a 2 x 2 factorial arrangement (two corn sources and two levels of phytase). In Exp. 2, 48 crossbred pigs (barrow:gilt, 1:1) averaging 9.25 kg were used to evaluate growth performance. There were no detectable interactions between corn source and phytase for any of the performance criteria measured. Pigs receiving normal corn had the lowest (P < 0.05) BW and rate of gain. Feed efficiency was lower (P < 0.05) in pigs fed normal compared with those fed the HAP corn phytase-supplemented diet. In Exp. 3, 24 crossbred barrows averaging 14.0 kg were used to evaluate nutrient digestibility. There were no detectable interactions between corn and phytase for any of the N and Ca balance criteria. Nitrogen and Ca retention were improved in pigs receiving HAP corn with phytase (P < 0.05). Retention and digestibility of P was lowest (P < 0.01) for pigs on normal corn diet without phytase. The percentage of P digested and retained was improved and fecal P excretion lowered (P < 0.05) by feeding HAP corn. The results of this study indicate that the bioavailability and balance of P in HAP corn is superior to that of normal corn. The addition of 600 phytase units (Natuphos 600, BASF) to HAP corn-based diets further improved P digestibility and reduced P excretion in pigs.
Two trials were conducted to evaluate the efficacy of a new microbial phytase (Phyzyme XP) for broiler chicks. Trial 1 used 192 8-d-old male broilers in a 14-d trial to assess growth and nutrient utilization. Dietary treatments (221.9 g/kg CP) included a positive control [5.0 g/kg nonphytate P (NPP)], negative control (1.2 g/kg NPP), and negative control plus 500 or 1,000 phytase units/kg of diet. Phytase addition increased weight gain, feed intake, feed efficiency, and tibia and toe ash (linear, P < 0.01) with tibia ash also responding quadratically (P < 0.05). Apparent ileal digestibility of P (linear and quadratic, P < 0.05), tryptophan, and valine (linear, P < 0.05) also increased. Linear and quadratic responses were observed for retention of DM, nitrogen, P, and several amino acids (P < 0.05) with added phytase. Trial 2 utilized 576 1-d-old male broilers over a 42-d period to evaluate growth performance. Diets were formulated for starter (222.7 g/kg CP) and grower (201.5 g/kg CP) phases and included a positive control (starter and grower, 5.0 and 3.8 g/kg NPP, respectively); negative control (starter and grower, 2.4 and 1.8 g/kg NPP, respectively); negative control plus 500, 750, or 1,000 phytase units/kg; and negative control plus 500 phytase units/kg of Natuphos phytase. Phytase increased weight gain and feed intake (starter, grower, overall) as well as feed efficiency during the starter period (linear, P < 0.05). Feed intake was also improved during the grower period and overall (quadratic, P < 0.05). Tibia and toe ash of birds fed for the first 21 d increased (linear, P < 0.05) with tibia ash also increasing quadratically (P < 0.05). Overall, tibia and toe ash were improved due to phytase addition (linear and quadratic, P < 0.05). In conclusion, this microbial phytase, derived from Escherichia coli and expressed in Schizosaccaromyces pombe, elicited improved growth performance, bone mineralization, and P utilization in broiler chicks.
Wheat by-products are feedstuffs that vary in nutritional value, partly because of arabinoxylans that limit nutrient digestibility. Millrun is a byproduct from dry milling wheat into flour and contains varying amounts of the bran, middlings, screening, and shorts fractions. The digestible nutrient content of mill-run is not well known. Effects of xylanase supplementation (0 or 4,000 units/kg of diet) on energy, AA, P, and Ca digestibilities were studied in a wheat control diet and 5 diets containing 30% of a by-product (mill-run, middlings, shorts, screening, or bran) in a 2 x 6 factorial arrangement of treatments. The wheat control diet was formulated to contain 3.34 Mcal of DE/kg and 3.0 g of standardized ileal digestible Lys/Mcal of DE. Diets contained 0.4% chromic oxide. Each of 12 ileal-cannulated pigs (32.5 +/- 2.5 kg) was fed 6 or 7 of 12 diets at 3 times the DE requirement for maintenance in successive 10-d periods for 6 or 7 observations per diet. Feces and ileal digesta were each collected for 2 d. Xylanase tended to increase (P < 0.10) ileal energy digestibility by 2.2 percentage units and the DE content by 0.10 Mcal/kg of DM and increased (P < 0.05) ileal DM digestibility by 2.8 percentage units; a diet x xylanase interaction was not observed. Xylanase increased (P < 0.05) total tract energy and DM digestibilities and the DE content. A diet x xylanase interaction was observed; xylanase increased (P < 0.05) total tract energy digestibility of the millrun diet from 72.1 to 78.9%, DE content from 3.19 to 3.51 Mcal/kg of DM, and DM digestibility from 71.5 to 78.6%. Diet affected (P < 0.05) and xylanase improved (P < 0.05) digestibility and digestible contents of some AA in diets and by-products, including Lys, Thr, and Val. Xylanase increased (P < 0.05) Lys digestibility by 13.8, 5.0, 5.2, 6.0, and 14.1 percentage units in millrun, middlings, shorts, screening, and bran, respectively. Diet affected (P < 0.01) total tract P and Ca digestibilities. Xylanase increased (P < 0.05) digestible P and Ca contents. In summary, nutrient digestibility varies among wheat by-products. Millrun contained 2.65 Mcal of DE/kg of DM, which xylanase increased to 3.56 Mcal of DE/kg of DM. Xylanase improved nutrient digestibility and DE content in wheat by-products; and the extent of improvement depended on the by-product. Xylanase supplementation may maximize opportunities to include wheat byproducts in swine diets and ameliorate reductions in nutrient digestibility that may be associated with arabinoxylans.
Three experiments were conducted to evaluate the effect of supplementing phytase and xylanase on nutrient digestibility and performance of growing pigs fed wheat-based diets. In Exp. 1, 10 diets were fed to 60 pigs from 20 to 60 kg of BW to determine the effect of combining phytase and xylanase on apparent total tract digestibility (ATTD) of nutrients and growth performance. The 10 diets included a positive control diet (PC; 0.23% available P; 0.60% Ca) and a negative control diet (NC; 0.16% available P; 0.50% Ca) supplemented with phytase at 0, 250, and 500 fytase units (FTU)/kg and xylanase at 0, 2,000, and 4,000 xylanase units (XU)/kg in a 3 x 3 factorial arrangement. In Exp. 2, 6 ileally cannulated barrows (initial BW = 35.1 kg) were fed 4 wheat-based diets in a 4 x 4 Latin square design, with 2 added columns to determine the effect of combining phytase and xylanase on apparent ileal digestibility (AID) of nutrients. The 4 diets were NC (same as that used in Exp. 1) or NC supplemented with phytase at 500 FTU/kg, xylanase at 4,000 XU/kg, or phytase at 500 FTU/kg plus xylanase at 4,000 XU/kg. In Exp. 3, 36 barrows (initial BW = 55.5 kg) were fed 4 diets based on prepelleted (at 80 degrees C) and crumpled wheat for 2 wk to determine the effect of phytase supplementation on ATTD of nutrients. The 4 diets fed were a PC (0.22% available P; 0.54% Ca) and a NC (0.13% available P; 0.43% Ca) alone or with phytase at 500 or 1,000 FTU/kg. All diets in the 3 experiments contained Cr(2)O(3) as an indigestible marker. No synergistic interactions were detected between phytase and xylanase on any of the response criteria measured in Exp. 1 or 2. There were no dietary effects on growth performance in Exp. 1. In Exp. 1, phytase at 250 FTU/kg increased the ATTD of P and Ca by 51 and 11% at 20 kg of BW or by 54 and 10% at 60 kg of BW, respectively, but increasing the level of phytase to 500 FTU/kg only increased (P < 0.05) ATTD of P at 20 kg of BW. In Exp. 2, phytase at 500 FTU/kg increased (P < 0.05) the AID of P and Ca by 21 and 12%, respectively. In Exp. 3, phytase at 500 FTU/kg improved (P < 0.05) ATTD of P by 36%, but had no further effect at 1,000 FTU/kg. Xylanase at 4,000 XU/kg improved (P < 0.05) AID of Lys, Leu, Phe, Thr, Gly, and Ser in Exp. 2. In conclusion, phytase and xylanase improved P and AA digestibilities, respectively, but no interaction between the 2 enzymes was noted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.