Soil organic carbon (SOC) is a potential soil fertility indicator for regulating nitrogen application in tropical farming systems. However, there are limited studies that have discussed SOC thresholds above or below which crop production could be diminished, or at which no or high response to nitrogen (N) application can be realized. This review explores the drivers of SOC concentration relevant for the establishment of thresholds. We further evaluate existing SOC thresholds for provoking no yield response or significant response to added N fertilizer. Key drivers for SOC concentration relevant in establishing thresholds are mainly climate, topography, texture, and land use management. Soil organic carbon threshold for sustaining soil quality is widely suggested to be about 2% below which deterioration may occur. For added N fertilizer management, specific SOC thresholds seem quite complex and are only valid after assuming other factors are non-limiting. In some soils, SOC levels as low as 0.5% result in fertilizer responses and soils as high as 2% SOC also respond to small N doses. Minimum SOC thresholds can be identified for a given soil type, but maximum thresholds depend on crop N requirements, crop N use efficiency and amount of N applied. However, there seem to exist critical total SOC ranges that could be targeted for optimal indigenous N supply and integrative soil functional benefits. These can be targeted as minimum levels in soil fertility restoration. In all, it is still difficult to establish a single minimum or maximum SOC threshold value that can be universally or regionally accepted.
Abstract. Simple and affordable soil fertility ratings are essential, particularly for the resource-constrained farmers in sub-Saharan Africa (SSA), in planning and implementing prudent interventions. A study was conducted on Ferralsols in Uganda to evaluate farmer-based soil fertility assessment techniques, hereafter referred to as farmers' field experiences (FFE), for ease of use and precision, against more formal scientific quantitative ratings using soil organic carbon (SQR-SOC). A total of 30 fields were investigated and rated using both techniques, as low, medium and high in terms of soil fertility -with maize as the test crop. Both soil fertility rating techniques were fairly precise in delineating soil fertility classes, though the FFE was inefficient in distinguishing fields > 1.2 % SOC with medium and high fertility. Soil organic carbon, silt and clay were exceptionally influential, accounting for the highest percentage in grain yield of 50 % in the topsoil (0-15 cm) and 67 % for the mean concentrations from 0 to 15 and 15 to 30 cm. Each unit increase in SOC concentration resulted in 966 to 1223 kg ha −1 yield gain. The FFE technique was effective in identifying lowfertility fields, and this was coherent with the fields categorized as low (SOC < 1.2 %). Beyond this level, its precision can be remarkably increased when supplemented with the SQR-SOC technique.
We propose a novel indicator measuring one dimension of the sustainability of an entity in modern societies: Nitrogen-neutrality. N-neutrality strives to offset Nr releases an entity exerts on the environment from the release of reactive nitrogen (Nr) to the environment by reducing it and by offsetting the Nr releases elsewhere. N-neutrality also aims to increase awareness about the consequences of unintentional releases of nitrogen to the environment. N-neutrality is composed of two quantified elements: Nr released by an entity (e.g. on the basis of the N footprint) and Nr reduction from management and offset projects (N offset). It includes management strategies to reduce nitrogen losses before they occur (e.g., through energy conservation). Each of those elements faces specific challenges with regard to data availability and conceptual development. Impacts of Nr releases to the environment are manifold, and the impact profile of one unit of Nr release depends strongly on the compound released and the local susceptibility to Nr. As such, Nneutrality is more difficult to conceptualize and calculate than C-neutrality. We developed a workable conceptual framework for N-neutrality which was adapted for the 6th International Nitrogen Conference (N2013, Kampala, November 2013). Total N footprint of the surveyed meals at N2013 was 66 kg N. A total of US$ 3050 was collected from the participants and used to offset the conference's N footprint by supporting the UN Millennium Village cluster Ruhiira in South-Western Uganda. The concept needs further development in particular to better incorporate the spatio-temporal variability of impacts and to standardize the methods to quantify the required N offset to neutralize the Nr releases impact. Criteria for compensation projects need to be sharply defined to allow the development of a market for N offset certificates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.