We report the investigation of the structural stability of Co (1−x) Ni x Si monosilicides for 0 < x < 1. As CoSi crystallizes in the FeSi-type structure (B20) and NiSi is stable in the MnP-type structure (B31), a complete set of samples has been synthesized and a systematic study of phase formation under different annealing conditions were carried out in order to understand the reason of such a structural transition when x goes from 0 to 1. This study has revealed a limit in the solubility of Ni in CoSi B20 structure of about 17.5 at.% and of Co in NiSi B31 phase of about 13 at.%. For 0.35 < x < 0.74 both B20 and B31 phases are present in the sample at there respective limits of solubility. The temperature dependence of the magnetic susceptibility has also been measured revealing diamagnetic behaviors. Optimal structural parameters and phase stability of the solid solution have been investigated using self-consistent full-potential linearized augmented plane wave method (FP-LAPW) based on the density functional theory (DFT). This calculation well predicts the structural instability observed experimentally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.