The laser-induced incandescence of a particle of unknown size and composition can be detected simultaneously with the light elastically scattered by the particle, providing information on both the size and composition of the particle. The technique relies on vaporization of the particle; detection of the incandescence signal at the time of vaporization allows determination of the boiling point of the particle, which can in turn be related to the composition of the particle. The elastically scattered signal provides information about the size of the particle and confirmation that it was vaporized. The technique is demonstrated by directing particles through a Nd:YAG laser cavity with approximately 10(6) W/cm2 of circulating intensity. Elements such as tungsten, silicon, and graphite, as well as common aerosols such as soot, can be detected and identifed.
The muon anomalous magnetic moment has been measured in a new experiment at Brookhaven. Polarized muons were stored in a superferric ring, and the angular frequency difference, v a , between the spin precession and orbital frequencies was determined by measuring the time distribution of highenergy decay positrons. The ratio R of v a to the Larmor precession frequency of free protons, v p , in the storage-ring magnetic field was measured. We find R 3.707 220͑48͒ 3 10 23. With m m ͞m p 3.183 345 47͑47͒ this gives a m 1 1 165 925͑15͒ 3 10 29 (613 ppm), in good agreement with the previous CERN measurements for m 1 and m 2 and of approximately the same precision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.