On the night of 22–23 February 2006, 444 transient luminous events (TLEs), 86% sprites, were observed above a prolific mesoscale convective system (MCS) over Argentina, as part of the third sprite campaign in Brazil. GOES infrared (IR) cloud top temperatures (Tc) and Tropical Rainfall Measuring Mission (TRMM) radar (PR) and microwave (TMI) data were used to investigate the MCS convective characteristics and their relationship with World Wide Location Network (WWLLN) detected cloud‐to‐ground (CG) lightning and TLE activity. The MCS had a minimum lifetime of 20 hours, 8.5 as a MCS, a maximum extent of ∼430,000 km2, and gusty winds of ∼39–50 km/h. It had several distinctive characteristics: exceptionally high TLE rate, multicellular structure with 19 distinguishable convective regions, and cloud tops temperatures (Tc) ∼10–20 °C higher than regular TLE‐producing MCSs over the central USA and South America. Most TLEs occurred above “individual stratiform regions”, where Tc varied from −45 °C to −53 °C from the beginning to the end of the night, surrounding the areas of strong convections, with convective cores at Tc −59 °C to −74 °C, which did not extend up to or overshoot the tropopause, estimated at −75 °C (∼17.1 km) as normally observed for TLE‐producing MCS in these regions. The moderated convection is contrary to the expectation that large charge production is accompanied by vigorous updrafts within deep convection that give rise to cold cloud overshooting tops, thus prompting a detailed study of this prolific TLE‐producing thunderstorm. On the basis of a charge moment change threshold of 350 Ckm and estimated 5 km charge removal altitude, a lower threshold of ∼4,300 C/h was estimated for the hourly charge transfer rate necessary for the observed sprite production (383 events), which is twice the rate for an average TLE‐producing MCS (70 events), also estimated. TMI/TRMM data for the storm at early development showed a low brightness temperature of 84 K, indicative of significant ice content, which is important for cloud electrification processes. We suggest that the unusually high incidence of TLEs in this moderately convective MCS may be related to other local geophysical phenomena such as a large tropospheric aerosol concentration due to smoke from forest fires. Satellite fire count data showed that there were ∼200 fires between 20 and 22 February immediately north of the MCS initiation region and a transport simulation with the Coupled Aerosol‐Tracer Transport model from the Brazilian developments on Regional Atmospheric Modeling System (CATT/BRAMS) model showed a large PM2.5 aerosol concentration, 10,000 μg/m2 (column integrated), at the region where the MCS developed. The aerosols present in the smoke may have been a source of ice nuclei affecting the production of ice particles that get positively charged, accounting for the charge transfer rate necessary to originate the observed TLE production.
Abstract. We developed a technique to identify and estimate the size, intensity, and Tropopause overshoot of thunderstorm convective cores expected to be significant sources of gravity waves. The work was based on GOES IR images of South America on the night of 30 September to 1 October and 25–26 October 2005, as part of the Spread F Experiment (SpreadFEx) in Brazil in 2005. We also characterized, for the first time, the convective activity of three small TLE producing thunderstorms that yielded 11 TLEs on 25–26 October 2005. The campaign occurred during the dry to wet season transition in central Brazil, marked by the presence of extra-tropical cyclogenesis over the Atlantic Ocean, and cold fronts penetrating inland. The Tropopause temperature was typically −76°C with a corresponding altitude of ~15 200 m. Vigorous convective cores capable of generating strong gravity waves were located in convective regions having areas with cloud top temperatures ≤−76°C. They had typical cloud-top temperature deficits of ΔT−2.0°C to −8.0°C from the average surroundings, implying overshoot heights of 200 to 3100 m, which are within the typical range. Fast vertical development and high horizontal growth rates were associated with a large number of simultaneously active vigorous convective cores, indicating that their dynamics may have determined the spatial-temporal development of the thunderstorms analyzed. Moderate convective cores were also present in areas with cloud top −76°C≤T≤−70°C. They had ΔT of −1.9°C to −5.3°C producing overshoots between 80–300 m. All convective cores had typical diameters of 5–20 km and their size tended to increase with ΔT, there was a 57% correlation between the two parameters. Analysis of the relationship of cloud top T with positive and negative cloud-to-ground lightning (+/−CG) occurrence rate and with peak current showed that lighting activity may provide an independent way to identify convective cores and measure their intensity, since they were characterized by a high incidence of low peak current −CGs that forms the bulk of the −CG population.
Figure 4 of the mentioned paper, which is an atmospheric temperature profile, was accidentally replaced by a corrected version of
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.