Limb-girdle muscular dystrophy type 1D (LGMD1D) was linked to 7q36 over a decade ago1, but its genetic cause has remained elusive. We have studied nine LGMD families from Finland, the U.S., and Italy, and identified four dominant missense mutations leading to p.Phe93Leu or p.Phe89Ile changes in the ubiquitously expressed co-chaperone DNAJB6. Functional testing in vivo showed that the mutations have a dominant toxic effect mediated specifically by the cytoplasmic isoform of DNAJB6. In vitro studies demonstrated that the mutations increase the half-life of DNAJB6, extending this effect to the wild-type protein, and reduce its protective anti-aggregation effect. Further, we show that DNAJB6 interacts with members of the CASA complex, including the myofibrillar-myopathy-causing protein BAG3. Our data provide the genetic cause of LGMD1D, suggest that the pathogenesis is mediated by defective chaperone function, and highlight how mutations expressed ubiquitously can exert their effect in a tissue-, cellular compartment-, and isoform-specific manner.
Tibial muscular dystrophy (TMD) is an autosomal dominant late-onset distal myopathy linked to chromosome 2q31. The linked region includes the giant TTN gene, which encodes the central sarcomeric protein, titin. We have previously shown a secondary calpain-3 defect to be associated with TMD, which further underscored that titin is the candidate. We now report the first mutations in TTN to cause a human skeletal-muscle disease, TMD. In Mex6, the last exon of TTN, a unique 11-bp deletion/insertion mutation, changing four amino acid residues, completely cosegregated with all tested 81 Finnish patients with TMD in 12 unrelated families. The mutation was not found in 216 Finnish control samples. In a French family with TMD, a Leu-->Pro mutation at position 293,357 in Mex6 was discovered. Mex6 is adjacent to the known calpain-3 binding site Mex5 of M-line titin. Immunohistochemical analysis using two exon-specific antibodies directed to the M-line region of titin demonstrated the specific loss of carboxy-terminal titin epitopes in the TMD muscle samples that we studied, thus implicating a functional defect of the M-line titin in the genesis of the TMD disease phenotype.
The TTN gene with 363 coding exons encodes titin, a giant muscle protein spanning from the Z-disk to the M-band within the sarcomere. Mutations in the TTN gene have been associated with different genetic disorders, including hypertrophic and dilated cardiomyopathy and several skeletal muscle diseases.Before the introduction of next generation sequencing (NGS) methods, the molecular analysis of TTN has been laborious, expensive and not widely used, resulting in a limited number of mutations identified. Recent studies however, based on the use of NGS strategies, give evidence of an increasing number of rare and unique TTN variants. The interpretation of these rare variants of uncertain significance (VOUS) represents a challenge for clinicians and researchers.The main aim of this review is to describe the wide spectrum of muscle diseases caused by TTN mutations so far determined, summarizing the molecular findings as well as the clinical data, and to highlight the importance of joint efforts to respond to the challenges arising from the use of NGS. An international collaboration through a clinical and research consortium and the development of a single accessible database listing variants in the TTN gene, identified by high throughput approaches, may be the key to a better assessment of titinopathies and to systematic genotype– phenotype correlation studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.