The synthesis of powders with controlled shape and narrow particle size distributions is still a major challenge for many industries. A continuous Segmented Flow Tubular Reactor (SFTR) has been developed to overcome homogeneity and scale‐up problems encountered when using batch reactors. Supersaturation is created by mixing the co‐reactants in a micromixer inducing precipitation; the suspension is then segmented into identical micro‐volumes by a non‐miscible fluid and sent through a tube. These micro‐volumes are more homogeneous when compared to large batch reactors leading to narrower size distributions, better particle morphology, polymorph selectivity and stoichiometry. All these features have been demonstrated on single tube SFTR for different chemical systems. To increase productivity for commercial application the SFTR is being “scaled‐out” by multiplying the number of tubes running in parallel instead of scaling‐up by increasing their size. The versatility of the multi‐tube unit will allow changes in type of precipitate with a minimum of new investment as new chemistry can be researched, developed and optimised in a single tube SFTR and then transferred to the multi‐tube unit for powder production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.