Two series of glycopeptides with mono- and disaccharides, [GalNAc and Galbeta (1-3)GalNAc] O-linked to serine and threonine at one, two or three contiguous sites were synthesized and characterized by 1H NMR. The conformational effects governed by O-glycosylation were studied and compared with the corresponding non-glycosylated counterparts using NMR, CD and molecular modelling. These model peptides encompassing the aa sequence, PAPPSSSAPPE (series I) and APPETTAAPPT (series II) were essentially derived from a 23-aa tandem repeat sequence of low molecular weight human salivary mucin (MUC7). NOEs, chemical shift perturbations and temperature coefficients of amide protons in aqueous and nonaqueous media suggest that carbohydrate moiety in threonine glycosylated peptides (series II) is in close proximity to the peptide backbone. An intramolecular hydrogen bonding between the amide proton of GalNAc or Galbeta (1-3)GalNAc and the carbonyl oxygen of the O-linked threonine residue is found to be the key structure stabilizing element. The carbohydrates in serine glycosylated peptides (series I), on the other hand, lack such intramolecular hydrogen bonding and assume a more apical position, thus allowing more rotational freedom around the O-glycosidic bond. The effect of O-glycosylation on peptide backbone is clearly reflected from the observed overall differences in sequential NOEs and CD band intensities among the various glycosylated and non-glycosylated analogues. Delineation of solution structure of these (glyco)peptides by NMR and CD revealed largely a poly L-proline type II and/or random coil conformation for the peptide core. Typical peptide fragments of tandem repeat sequence of mucin (MUC7) showing profound glycosylation effects and distinct differences between serine and threonine glycosylation as observed in the present investigation could serve as template for further studies to understand the multifunctional role played by mucin glycoproteins.
Domain 1 of the low-molecular-weight human salivary mucin, designated MUC7 D1, spans the 51 N-terminal amino acid residues. This domain contains a 15-residue basic histidine-rich subdomain (R3-Q17) which has 53% sequence similarity to histatin 5 (Hsn-5), a salivary molecule known to exert potent in vitro cidal activity against Candida albicans and many other medically important fungi. The MUC7 D1-15mer and its derivatives have previously been synthesized in our laboratory and their candidacidal activities have been found to be inferior to that of Hsn-5. We were therefore intrigued to explore the candidacidal potency of the full-length MUC7 D1 (51-mer). Linear solid-phase synthesis of this domain has been accomplished following standard Fmoc chemistry. The problems of partial coupling, owing to the peptide chain length, at several stages of the solid-phase step-by-step synthesis were circumvented either by double-coupling techniques or efficient coupling procedures. The MUC7 D1 peptide was purified to homogeneity by conventional reverse-phase HPLC using two columns connected in series. Secondary structure of the purified peptide was assessed by circular dichroism (CD) spectroscopy in phosphate buffer and trifluoroethanol and compared to that of MUC7 D1-15mer and Hsn-5. The MUC7 D1 candidacidal activity was assessed against azole-sensitive and azole-resistant C. albicans strains and was found, unlike that of the MUC7 D1-15mer, to be comparable with that of Hsn-5, indicating that in addition to Hsn-5, MUC7 D1 could provide an attractive alternative to the classical antifungal agents. The candidacidal potency of MUC7 D1, like that of MUC7 D1-15mer, and of Hsn-5, appears to be largely dependent on peptide charge, irrespective of alpha-helical structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.