Implantable left ventricular assist devices (LVADs) became the therapy of choice in treating end-stage heart failure. Although survival improved substantially and is similar in currently clinically implanted LVADs HeartMate II (HM II) and HeartWare HVAD, complications related to blood trauma are frequently observed. The aim of this study was to compare these two pumps regarding their potential blood trauma employing computational fluid dynamics. High-resolution structured grids were generated for the pumps. Newtonian flow was calculated, solving Reynolds-averaged Navier-Stokes equations with a sliding mesh approach and a k-ω shear stress transport turbulence model for the operating point of 4.5 L/min and 80 mm Hg. The pumps were compared in terms of volumes subjected to certain viscous shear stress thresholds, below which no trauma was assumed (von Willebrand factor cleavage: 9 Pa, platelet activation: 50 Pa, and hemolysis: 150 Pa), and associated residence times. Additionally, a hemolysis index was calculated based on a Eulerian transport approach. Twenty-two percent of larger volumes above 9 Pa were observed in the HVAD; above 50 Pa and 150 Pa the differences between the two pumps were marginal. Residence times were higher in the HVAD for all thresholds. The hemolysis index was almost equal for the HM II and HVAD. Besides the gap regions in both pumps, the inlet regions of the rotor and diffuser blades have a high hemolysis production in the HM II, whereas in the HVAD, the volute tongue is an additional site for hemolysis production. Thus, in this study, the comparison of the HM II and the HVAD using numerical methods indicated an overall similar tendency to blood trauma in both pumps. However, influences of turbulent shear stresses were not considered and effects of the pivot bearing in the HM II were not taken into account. Further in vitro investigations are required.
Stimulated by a recent controversy regarding pressure drops predicted in a giant aneurysm with a proximal stenosis, the present study sought to assess variability in the prediction of pressures and flow by a wide variety of research groups. In phase I, lumen geometry, flow rates, and fluid properties were specified, leaving each research group to choose their solver, discretization, and solution strategies. Variability was assessed by having each group interpolate their results onto a standardized mesh and centerline. For phase II, a physical model of the geometry was constructed, from which pressure and flow rates were measured. Groups repeated their simulations using a geometry reconstructed from a micro-computed tomography (CT) scan of the physical model with the measured flow rates and fluid properties. Phase I results from 25 groups demonstrated remarkable consistency in the pressure patterns, with the majority predicting peak systolic pressure drops within 8% of each other. Aneurysm sac flow patterns were more variable with only a few groups reporting peak systolic flow instabilities owing to their use of high temporal resolutions. Variability for phase II was comparable, and the median predicted pressure drops were within a few millimeters of mercury of the measured values but only after accounting for submillimeter errors in the reconstruction of the life-sized flow model from micro-CT. In summary, pressure can be predicted with consistency by CFD across a wide range of solvers and solution strategies, but this may not hold true for specific flow patterns or derived quantities. Future challenges are needed and should focus on hemodynamic quantities thought to be of clinical interest.
The homogeneous conversion of cellulose in the ionic liquid 1‐ethyl‐3‐methylimidazolium acetate with 2‐furoyl chloride, p‐toluenesulfonyl chloride, and triphenylmethyl chloride yields surprisingly pure cellulose acetate samples in any case. From NMR spectroscopic studies, it may be concluded that during the homogeneous functionalization reactive intermediates including furane‐2‐carboxylic acid/acetic acid anhydride and acetic acid triphenylmethyl ester are formed leading to the cellulose acetates with DS values in the range from 0.55 to 1.86.magnified image
A simple, environmentally friendly and cost-effective synthetic method has been developed to prepare highly stable aqueous colloidal solutions of small (2–14 nm) silver nanoparticles using aminocellulose (AMC) as a combined reducing and capping reagent. The effects of temperature, reaction time, the concentration of silver nitrate and AMC are systematically investigated and the reaction conditions optimised. The AMC-stabilized silver nanoparticles can be deposited on the surfaces of cotton fibres and microporous cellulose acetate (CA) filters, without affecting the permeability of the filters. The AMC-stabilized aqueous silver colloidal solutions and silver nanoparticle coated CA filters and cotton fibres all show significant antibacterial action against all the bacterial isolates tested, with the antibacterial levels between “Sufficient” and “Good”, although some of solutions have been stored at room temperature for 18 months
Peak systolic pressure drops can be reliably calculated using MRI-based CFD in a clinical setting. Therefore, CFD might be an attractive noninvasive alternative to diagnostic catheterization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.