Abstract. The role of SGLT2 (the gene for a renal sodiumdependent glucose transporter) in renal glucosuria was evaluated. Therefore, its genomic sequence and its intron-exon organization were determined, and 23 families with index cases were analyzed for mutations. In 21 families, 21 different SGLT2 mutations were detected. Most of them were private; only a splice mutation was found in 5 families of different ethnic backgrounds, and a 12-bp deletion was found in two German families. Fourteen individuals (including the original patient with 'renal glucosuria type 0') were homozygous or compound heterozygous for an SGLT2 mutation resulting in glucosuria in the range of 14.
Fanconi-Bickel syndrome (FBS) is a rare autosomal-recessive inborn error of metabolism characterized by hepatorenal glycogen accumulation, Fanconi nephropathy and impaired utilization of glucose and galactose. To date, no underlying enzymatic defect in carbohydrate metabolism has been identified. Therefore, and because of the impairment of both glucose and galactose metabolism, a primary defect of monosaccharide transport across membranes has been suggested. Here we report mutations in the gene encoding the facilitative glucose transporter 2 (GLUT2) in three FBS families, including the original patient described in 1949 by Fanconi and Bickel. Homozygous mutations were found in affected individuals, whereas all parents tested were heterozygous for the respective mutation. Because all detected mutations (delta T446-449, C1251T and C1405T) predict truncated translation products that cannot be expected to have functional monosaccharide transport activity, GLUT2 mutations are probably the cause of FBS.
Although with the first description of a congenital defect of facilitative glucose transport the main steps in the pathophysiology of Fanconi-Bickel syndrome have been elucidated, numerous pathophysiological mechanisms are far from clear and thus encourage the ongoing study of patients with this disorder.
We report a total of 23 novel mutations of the SLC2A2 ( GLUT2) gene in 49 patients with a clinical diagnosis of Fanconi-Bickel syndrome (FBS). Molecular genetic analysis has now been performed in more than 50% of the 109 FBS cases from 88 families that we have been able to locate world-wide since the original report in 1949. In these 49 patients, 33 different SLC2A2 mutations (9 missense, 7 nonsense, 10 frameshift, 7 splice-site) have been detected. Thus, our results confirm that mutations of SLC2A2 are the basic defect in patients with FBS. Mutations of SLC2A2 were detected in historical FBS patients in whom some of the characteristic clinical features (hepatorenal glycogen accumulation, glucose and galactose intolerance, fasting hypoglycemia, a characteristic tubular nephropathy) and the effect of therapy were described for the first time. Mutations were also found in patients with atypical clinical signs such as intestinal malabsorption, failure to thrive, the absence of hepatomegaly, or renal hyperfiltration. No single prevalent SLC2A2 mutation was responsible for a significant number of cases. In a high percentage (74%) of FBS patients, the mutation is homozygous, so we conclude that the prevalence of SLC2A2 mutations is relatively low in most populations. No mutational hot spots within SLC2A2 or even within homologous sequences among the genes for facilitative glucose transporters were detected.
Fanconi-Bickel syndrome (FBS, OMIM 227810) is a rare type of glycogen storage disease (GSD). It is caused by homozygous or compound heterozygous mutations within GLUT2, the gene encoding the most important facilitative glucose transporter in hepatocytes, pancreatic beta-cells, enterocytes, and renal tubular cells. To date, 112 patients have been reported in the literature. Most patients have the typical combination of clinical symptoms: hepatomegaly secondary to glycogen accumulation, glucose and galactose intolerance, fasting hypoglycemia, a characteristic tubular nephropathy, and severely stunted growth. In 63 patients, mutation analysis has revealed a total of 34 different GLUT2 mutations with none of them being particularly frequent. No specific therapy is available for FBS patients. Symptomatic treatment is directed towards a stabilization of glucose homeostasis and compensation for renal losses of various solutes. In addition to the clinical and molecular genetic aspects of FBS, this review discusses the pathophysiology of the disease and compares it to recent findings in GLUT2 deficient transgenic animals. An overview is also provided on recently discovered members of the rapidly growing family of facilitative glucose transporters, which are novel candidates for congenital disorders of carbohydrate metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.