Increased climatic variability and more frequent episodes of extreme conditions may result in crops being exposed to more than one extreme temperature event in a single growing season and could decrease crop yields to the same extent as changes in mean temperature. The developmental stage of the crop exposed to increased temperatures will determine the severity of possible damage experienced by the plant. It is not known whether or not the damaging effects of heat episodes occurring at different phenological stages are additive. In the present study, the interaction of high‐temperature events applied at the stages of double ridges and anthesis in Triticum aestivum (L.) cv. Chablis was investigated. Biomass accumulation of control plants and that of plants experiencing high temperatures during the double‐ridge stage were similar and were reduced by 40 % when plants were subjected to a heat event at anthesis. Grain number on the main and side tillers declined by 41 %, and individual grain weight declined by 45 % with heat stress applied at the double‐ridge stage and anthesis or at anthesis alone. The harvest index was reduced from 0.53 to 0.33. Nitrogen contents in leaves were reduced by 10 % at the double‐ridge stage and by 25 % at anthesis. The maximum rates of CO2 assimilation increased with heat stress at the double‐ridge stage and higher rates were maintained throughout the growing season. The results clearly indicate that an extreme heat event at the double‐ridge stage does not affect subsequent growth or the response of wheat to heat stress at anthesis.
SummaryPolyploidy and increased genome size are hypothesized to increase organismal nutrient demands, namely of phosphorus (P), which is an essential and abundant component of nucleic acids. Therefore, polyploids and plants with larger genomes are expected to be selectively disadvantaged in P-limited environments. However, this hypothesis has yet to be experimentally tested.We measured the somatic DNA content and ploidy level in 74 vascular plant species in a long-term fertilization experiment. The differences between the fertilizer treatments regarding the DNA content and ploidy level of the established species were tested using phylogenybased statistics.The percentage and biomass of polyploid species clearly increased with soil P in particular fertilizer treatments, and a similar but weaker trend was observed for the DNA content. These increases were associated with the dominance of competitive life strategy (particularly advantageous in the P-treated plots) in polyploids and the enhanced competitive ability of dominant polyploid grasses at high soil P concentrations, indicating their increased P limitation.Our results verify the hypothesized effect of P availability on the selection of polyploids and plants with increased genome sizes, although the relative contribution of increased P demands vs increased competitiveness as causes of the observed pattern requires further evaluation.
Acquiring multi-temporal spatial information on vegetation condition at scales appropriate for site-specific agricultural management is often complicated by the need for meticulous field measurements. Understanding spatial/temporal crop cover heterogeneity within irrigated croplands may support sustainable land use, specifically in areas affected by land degradation due to secondary soil salinization. This study demonstrates the use of multi-temporal, high spatial resolution (10 m) SPOT-4/5 image data in an integrated change vector analysis and spectral mixture analysis (CVA-SMA) procedure. This procedure was implemented with the principal objective of mapping sub-field vegetation cover dynamics in irrigated lowland areas within the lowerlands of the Amu Darya River. CVA intensity and direction were calculated separately for the periods of 1998-2006 and 2006-2010. Cumulative change intensity and the overall directional trend were also derived for the entire observation period of 1998-2010. Results show that most of the vector changes were observed between 1998 and 2006; persistent conditions were seen within the study region A decreasing vegetation cover trend was identified within 38% of arable land. Areas of decreasing vegetation cover were located principally in the irrigation system periphery where deficient water supply and low soil quality lead to substandard crop development. During the 2006-2010 timeframe, degraded crop cover conditions persisted in 37% of arable land. Vegetation cover increased in 25% of the arable land where irrigation water supply was adequate. This high sub-field crop performance spatial heterogeneity clearly indicates that current land management practices are inefficient. Such information can provide the basis for implementing and adapting irrigation applications and salt leaching techniques to site-specific conditions and thereby make a significant contribution to sustainable regional land management.
Grassland scientists and farmers are increasingly faced with emerging new technologies and information systems that have been primarily developed in engineering sciences, in particular, precision agriculture, remote sensing, geographic information and biotechnology. Judgment upon whether the implementation of any of these technologies may be beneficial in economic and ecological respects is challenging, especially to those who have to make on-farm decisions. New technologies have been applied on grassland only partially and with some delay compared with arable land. However, as we will show here, there is scope for successful implementation of new technologies in various climatic regions and for a wide range of applications. The paper presents the most important recent developments of new technologies in agriculture that have scope for application in grasslands. It defines the relevant terms and processes, provides examples of successful implementation, and discusses future directions and research needs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.