Malarial parasites have evolved resistance to all previously used therapies, and recent evidence suggests emerging resistance to the first-line artemisinins. To identify antimalarials with novel mechanisms of action, we have developed a high-throughput screen targeting the apicoplast organelle of Plasmodium falciparum. Antibiotics known to interfere with this organelle, such as azithromycin, exhibit an unusual phenotype whereby the progeny of drug-treated parasites die. Our screen exploits this phenomenon by assaying for "delayed death" compounds that exhibit a higher potency after two cycles of intraerythrocytic development compared to one. We report a primary assay employing parasites with an integrated copy of a firefly luciferase reporter gene and a secondary flow cytometry-based assay using a nucleic acid stain paired with a mitochondrial vital dye. Screening of the U.S. National Institutes of Health Clinical Collection identified known and novel antimalarials including kitasamycin. This inexpensive macrolide, used for agricultural applications, exhibited an in vitro IC(50) in the 50 nM range, comparable to the 30 nM activity of our control drug, azithromycin. Imaging and pharmacologic studies confirmed kitasamycin action against the apicoplast, and in vivo activity was observed in a murine malaria model. These assays provide the foundation for high-throughput campaigns to identify novel chemotypes for combination therapies to treat multidrug-resistant malaria.
Hepatitis B virus (HBV) persists by depositing a covalently closed circular DNA (cccDNA) in the nucleus of infected cells that cannot be targeted by available antivirals. Interferons can diminish HBV cccDNA via APOBEC3-mediated deamination. Here, we show that overexpression of APOBEC3A alone is not sufficient to reduce HBV cccDNA that requires additional treatment of cells with interferon indicating involvement of an interferon-stimulated gene (ISG) in cccDNA degradation. Transcriptome analyses identify ISG20 as the only type I and II interferon-induced, nuclear protein with annotated nuclease activity. ISG20 localizes to nucleoli of interferon-stimulated hepatocytes and is enriched on deoxyuridine-containing singlestranded DNA that mimics transcriptionally active, APOBEC3Adeaminated HBV DNA. ISG20 expression is detected in human livers in acute, self-limiting but not in chronic hepatitis B. ISG20 depletion mitigates the interferon-induced loss of cccDNA, and co-expression with APOBEC3A is sufficient to diminish cccDNA. In conclusion, non-cytolytic HBV cccDNA decline requires the concerted action of a deaminase and a nuclease. Our findings highlight that ISGs may cooperate in their antiviral activity that may be explored for therapeutic targeting.
Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide (NO) synthesis, whereas L-arginine (Arg) and L-homoarginine (hArg) serve as substrates for NO synthesis. ADMA and other methylated arginines are generally believed to exclusively derive from guanidine (N (G))-methylated arginine residues in proteins by protein arginine methyltransferases (PRMTs) that use S-adenosylmethionine (SAM) as the methyl donor. L-Lysine is known for decades as a precursor for hArg, but only recent studies indicate that arginine:glycine amidinotransferase (AGAT) is responsible for the synthesis of hArg. AGAT catalyzes the formation of guanidinoacetate (GAA) that is methylated to creatine by guanidinoacetate methyltransferase (GAMT) which also uses SAM. The aim of the present study was to learn more about the mechanisms of ADMA and hArg formation in humans. Especially, we hypothesized that ADMA is produced by N (G)-methylation of free Arg in addition to the known PRMTs-involving mechanism. In knockout mouse models of AGAT- and GAMT-deficiency, we investigated the contribution of these enzymes to hArg synthesis. Arg infusion (0.5 g/kg, 30 min) in children (n = 11) and ingestion of high-fat protein meals by overweight men (n = 10) were used to study acute effects on ADMA and hArg synthesis. Daily Arg ingestion (10 g) or placebo for 3 or 6 months by patients suffering from peripheral arterial occlusive disease (PAOD, n = 20) or coronary artery disease (CAD, n = 30) was used to study chronic effects of Arg on ADMA synthesis. Mass spectrometric methods were used to measure all biochemical parameters in plasma and urine samples. In mice, AGAT but not GAMT was found to contribute to plasma hArg, while ADMA synthesis was independent of AGAT and GAMT. Arg infusion acutely increased plasma Arg, hArg and ADMA concentrations, but decreased the plasma hArg/ADMA ratio. High-fat protein meals acutely increased plasma Arg, hArg, ADMA concentrations, as well as the plasma hArg/ADMA ratio. In the PAOD and CAD studies, plasma Arg concentration increased in the verum compared to the placebo groups. Plasma ADMA concentration increased only in the PAOD patients who received Arg. Our study suggests that in humans a minor fraction of free Arg is rapidly metabolized to ADMA and hArg. In mice, GAMT and N (G)-methyltransferases contribute to ADMA and hArg synthesis from Arg, whereas AGAT is involved in the synthesis of hArg but not of ADMA. The underlying biochemical mechanisms remain still elusive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.