The chemical modification of hydrogen-passivated n-Si (111) surfaces by a scanning tunneling microscope (STM) operating in air is reported. The modified surface regions have been characterized by STM spectroscopy, scanning electron microscopy (SEM), time-of-flight secondary-ion mass spectrometry (TOF SIMS), and chemical etch/Nomarski microscopy. Comparison of STM images with SEM, TOF SIMS, and optical information indicates that the STM contrast mechanism of these features arises entirely from electronic structure effects rather than from topographical differences between the modified and unmodified substrate. No surface modification was observed in a nitrogen ambient. Direct writing of features with 100 nm resolution was demonstrated. The permanence of these features was verified by SEM imaging after three months storage in air. The results suggest that field-enhanced oxidation/diffusion occurs at the tip-substrate interface in the presence of oxygen.
We present the first atomic-resolution image of a surface obtained with an optical implementation of the atomic-force microscope (AFM). The native oxide on silicon was imaged with atomic resolution, and ≊5-nm resolution images of aluminum, mechanically ground iron, and corroded stainless steel were obtained. The relative merits of an optical implementation of the AFM as opposed to a tunneling implementation are discussed.
A real-space technique for finding structural information in atom probe tomographs, spatial distribution maps (SDM), is described. The mechanics of the technique are explained, and it is then applied to some test cases. Many applications of SDM in atom probe tomography are illustrated with examples including finding crystal lattices, correcting lattice strains in reconstructed images, quantifying trajectory aberrations, quantifying spatial resolution, quantifying chemical ordering, dark-field imaging, determining orientation relationships, extracting radial distribution functions, and measuring ion detection efficiency.
The high resolution of the scanning tunneling microscope (STM) makes it a potentially important tool for the study of biomaterials. Biological materials can be imaged with the STM by a procedure in which fluid, nonconductive biomaterials are replaced by rigid and highly conductive freeze-fracture replicas. The three-dimensional contours of the ripple phase of dimyristoylphosphatidylcholine bilayers were imaged with unprecedented resolution with commercial STMs and standard freeze-fracture techniques. Details of the ripple amplitude, asymmetry, and configuration unobtainable by electron microscopy or x-ray diffraction can be observed relatively easily with the STM.
We show that a gold surface with atomically flat terraces as large as (150 nm)2 can be easily prepared in air by melting a gold wire with an oxyacetylene torch. Features with characteristic dimensions as low as 10 nm can be written and observed on these terraces with a scanning tunneling microscope. The features are appreciably distorted by diffusion within an hour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.