Although experience-dependent structural changes have been demonstrated in adult gray matter, there is little evidence for such changes in white matter. Using diffusion imaging, we detected a localised increase in fractional anisotropy, a measure of microstructure, in white matter underlying the intraparietal sulcus, following training of a complex visuo-motor skill. This provides the first evidence for training related changes in white matter structure in the healthy human adult brain.
The attenuation of the electron shower size beyond the shower maximum is studied with the KASCADE extensive air shower experiment in the primary energy range of about 10 14 − 10 16 eV. Attenuation and absorption lengths are determined by applying different approaches, including the method of constant intensity, the decrease of the flux of extensive air showers with increasing zenith angle, and its variation with ground pressure. We observe a significant dependence of the results on the applied method. The determined values of the attenuation length ranges from 175 to 196 g/cm 2 and of the absorption length from 100 to 120 g/cm 2 . The origin of these differences is discussed emphasizing the influence of intrinsic shower fluctuations.
A composition analysis of KASCADE air shower data is performed by means of unfolding the two-dimensional frequency spectrum of electron and muon numbers. Aim of the analysis is the determination of energy spectra for elemental groups representing the chemical composition of primary cosmic rays. Since such an analysis depends crucially on simulations of air showers the two different hadronic interaction models QGSJet and SIBYLL are used for their generation. The resulting primary energy spectra show that the knee in the all particle spectrum is due to a steepening of the 0927-6505/$ -see front matter Ó Astroparticle Physics 24 (2005) 1-25 www.elsevier.com/locate/astropart spectra of light elements but, also, that neither of the two simulation sets is able to describe the measured data consistently over the whole energy range with discrepancies appearing in different energy regions.
Phantom pain after arm amputation is widely believed to arise from maladaptive cortical reorganization, triggered by loss of sensory input. We instead propose that chronic phantom pain experience drives plasticity by maintaining local cortical representations and disrupting inter-regional connectivity. Here we show that, while loss of sensory input is generally characterized by structural and functional degeneration in the deprived sensorimotor cortex, the experience of persistent pain is associated with preserved structure and functional organization in the former hand area. Furthermore, consistent with the isolated nature of phantom experience, phantom pain is associated with reduced inter-regional functional connectivity in the primary sensorimotor cortex. We therefore propose that contrary to the maladaptive model, cortical plasticity associated with phantom pain is driven by powerful and long-lasting subjective sensory experience, such as triggered by nociceptive or top–down inputs. Our results prompt a revisiting of the link between phantom pain and brain organization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.