A population of 96 doubled haploid lines (DHLs) was prepared from F1 plants of the hexaploid wheat cross Chinese Spring x SQ1 (a high abscisic acid-expressing breeding line) and was mapped with 567 RFLP, AFLP, SSR, morphological and biochemical markers covering all 21 chromosomes, with a total map length of 3,522 cM. Although the map lengths for each genome were very similar, the D genome had only half the markers of the other two genomes. The map was used to identify quantitative trait loci (QTLs) for yield and yield components from a combination of 24 site x treatment x year combinations, including nutrient stress, drought stress and salt stress treatments. Although yield QTLs were widely distributed around the genome, 17 clusters of yield QTLs from five or more trials were identified: two on group 1 chromosomes, one each on group 2 and group 3, five on group 4, four on group 5, one on group 6 and three on group 7. The strongest yield QTL effects were on chromosomes 7AL and 7BL, due mainly to variation in grain numbers per ear. Three of the yield QTL clusters were largely site-specific, while four clusters were largely associated with one or other of the stress treatments. Three of the yield QTL clusters were coincident with the dwarfing gene Rht-B1 on 4BS and with the vernalisation genes Vrn-A1 on 5AL and Vrn-D1 on 5DL. Yields of each DHL were calculated for trial mean yields of 6 g plant(-1) and 2 g plant(-1) (equivalent to about 8 t ha(-1) and 2.5 t ha(-1), respectively), representing optimum and moderately stressed conditions. Analyses of these yield estimates using interval mapping confirmed the group-7 effects on yield and, at 2 g plant(-1), identified two additional major yield QTLs on chromosomes 1D and 5A. Many of the yield QTL clusters corresponded with QTLs already reported in wheat and, on the basis of comparative genetics, also in rice. The implications of these results for improving wheat yield stability are discussed.
In order to construct an RFLP map of barley, two populations were analyzed using 251 genomic and cDNA markers: one population comprised 71 F1 antherderived double haploid (DH) individuals of an intraspecific cross (IGRI x FRANKA), and the other 135 individuals of an interspecific F2/F3 progeny (VADA x H. spontaneum). The distribution of nonrepetitive clones over the seven barley chromosomes revealed a maximum for chromosome 2H and a minimum for 6H. The polymorphism of the interspecific progeny (76%) clearly exceeded that of the intraspecific progeny (26%) although, based on their pedigrees, IGRI and FRANKA are only distantly related. The contribution of individual chromosomes of the DH parents to the overall polymorphism varied between 8% and 50%. A significant portion (44% versus 10% of the interspecific progeny) of the markers mapped on the DH offspring showed distorted segregation, caused mainly by the prevalence of variants originating from the parent that better responded to in vitro culture (IGRI). In contrast to the interspecific map, probes displaying skewed segregation were clustered on the DH map on discrete segments. The colinear arrangement of both maps covers a distance of 1,453 cM and identifies regions of varying map distances.
Fusarium head blight (FHB) is a destructive disease of wheat. The objective of this study was to characterise the FHB resistance of the Brazilian spring wheat cultivar Frontana through molecular mapping. A population of 210 doubled-haploid lines from a cross of Frontana (partially resistant) and Remus (susceptible) was evaluated for FHB resistance during three seasons. Spray and single-spikelet inoculations were applied. The severity, incidence and spread of the disease were assessed by visual scoring. The population was genotyped with 566 DNA markers. The major QTL effect associated with FHB resistance mapped to chromosome 3A near the centromere, explaining 16% of the phenotypic variation for disease severity over 3 years. The most likely position is in the Xgwm720-Xdupw227 interval. The genomic region on 3A was significantly associated with FHB severity and incidence in all years evaluated, but not with FHB spread, indicating the prominent contribution of this QTL to resistance against initial infection. The map interval Xgwm129-Xbarc197 on chromosome 5A also showed consistent association with FHB severity and accounted for 9% of the phenotypic variation. In addition, smaller effects for FHB severity were identified on chromosomes 1B, 2A, 2B, 4B, 5A and 6B in single years. Individual QTLs for resistance to FHB spread accounted for less than 10% of the variation in trait expression. The present study indicates that FHB resistance of Frontana primarily inhibits fungal penetration (type I resistance), but has a minor effect on fungal spread after infection (type II resistance).
A genetic study is presented for traits relating to nitrogen use in wheat. Quantitative trait loci (QTLs) were established for 21 traits relating to growth, yield and leaf nitrogen (N) assimilation during grain fill in hexaploid wheat (Triticum aestivum L.) using a mapping population from the cross Chinese Spring x SQ1. Glutamine synthetase (GS) isozymes and estimated locations of 126 genes were placed on the genetic map. QTLs for flag leaf GS activity, soluble protein, extract colour and fresh weight were found in similar regions implying shared control of leaf metabolism and leaf size. Flag leaf traits were negatively associated with days to anthesis both phenotypically and genetically, demonstrating the complex interactions of metabolism with development. One QTL cluster for GS activity co-localised with a GS2 gene mapped on chromosome 2A, and another with the mapped GSr gene on 4A. QTLs for GS activity were invariably co-localised with those for grain N, with increased activity associated with higher grain N, but with no or negative correlations with grain yield components. Peduncle N was positively correlated, and QTLs co-localised, with grain N and flag leaf N assimilatory traits, suggesting that stem N can be indicative of grain N status in wheat. A major QTL for ear number per plant was identified on chromosome 6B which was negatively co-localised with leaf fresh weight, peduncle N, grain N and grain yield. This locus is involved in processes defining the control of tiller number and consequently assimilate partitioning and deserves further examination.
Fusarium head blight (FHB) of wheat has become a serious threat to wheat crops in numerous countries. In addition to loss of yield and quality, this disease is of primary importance because of the contamination of grain with mycotoxins such as deoxynivalenol (DON). The Swiss winter cultivar Arina possesses significant resistance to FHB. The objective of this study was to map quantitative trait loci (QTL) for resistance to FHB, DON accumulation and associated traits in grain in a double haploid (DH) population from a cross between Arina and the FHB susceptible UK variety Riband. FHB resistance was assessed in five trials across different years and locations. Ten QTL for resistance to FHB or associated traits were detected across the trials, with QTL derived from both parents. Very few of the QTL detected in this study were coincident with those reported by authors of two other studies of FHB resistance in Arina. It is concluded that the FHB resistance of Arina, like that of the other European winter wheat varieties studied to date, is conferred by several genes of moderate effect making it difficult to exploit in marker-assisted selection breeding programmes. The most significant and stable QTL for FHB resistance was on chromosome 4D and co-localised with the Rht-D1 locus for height. This association appears to be due to linkage of deleterious genes to the Rht-D1b (Rht2) semi-dwarfing allele rather than differences in height per se. This association may compromise efforts to enhance FHB resistance in breeding programmes using germplasm containing this allele.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.