Summary We report that p73 is expressed in multiciliated cells (MCCs), is required for MCC differentiation, and directly regulates transcriptional modulators of multiciliogenesis. Loss of ciliary biogenesis provides a unifying mechanism for many phenotypes observed in p73 knockout mice including hydrocephalus, hippocampal dysgenesis, sterility and chronic inflammation/infection of lung, middle ear and sinus. Through p73 and p63 ChIP-seq using murine tracheal cells, we identified over 100 putative p73 target genes that regulate MCC differentiation and homeostasis. We validated Foxj1, a transcriptional regulator of multiciliogenesis, and many other cilia-associated genes as direct target genes of p73 and p63. We show p73 and p63 are co-expressed in a subset of basal cells, and suggest that p73 ‘marks’ these cells for MCC differentiation. In sum, p73 is essential for MCC differentiation, functions as a critical regulator of a transcriptome required for MCC differentiation and, like p63, has an essential role in development of tissues.
Background Due to inherent disease heterogeneity, targeted therapies have eluded TNBC, and biomarkers predictive of treatment response have not yet been identified. This study was designed to determine if the mTOR inhibitor everolimus with cisplatin and paclitaxel would provide synergistic anti-tumor effects in TNBC. Methods Stage II/III patients with TNBC were enrolled in a randomized phase II trial of preoperative weekly cisplatin, paclitaxel and daily everolimus or placebo for 12 weeks, until definitive surgery. Tumor specimens were obtained at baseline, cycle 1 and surgery. Primary endpoint was pathological complete response (pCR); secondary endpoints included clinical responses, breast conservation rate, safety, and discovery of molecular features associated with outcome. Results Between 2009 and 2013, 145 patients were accrued; 36% patients in the everolimus arm and 49% patients in the placebo arm achieved pCR; in each arm, 50% of patients achieved complete responses by imaging. Higher rates of neutropenia, mucositis and transaminase elevation were seen with everolimus. Clinical response to therapy and long-term outcome correlated with increased frequency of DNA damage response (DDR) gene mutations, Basal-like1 and Mesenchymal TNBC-subtypes, AR-negative status and high Ki67, but not with tumor infiltrating lymphocytes. Conclusion The paclitaxel/cisplatin combination was well tolerated and active, but addition of everolimus was associated with more adverse events without improvement in pCR or clinical response. However, discoveries made from correlative studies could lead to predictive TNBC biomarkers that may impact clinical decision-making and provide new avenues for mechanistic exploration that could lead to clinical utility.
BACKGROUND.Erythrocyte changes from aerobic exercise training were examined during radiation treatment of breast cancer.METHODS.Twenty sedentary females with breast carcinoma who were ages 35 to 65 years were randomized to aerobic exercise (AE) of walking for 20 to 45 minutes, 3 to 5 times per week, at 50% to 70% of measured maximum heart rates or to placebo stretching (PS) activities 3 to 5 days per week during 7 weeks of radiation treatment. Measures were obtained 1 week before and after the radiation regimen. Serum blood analyses, through complete blood counts, measured red blood cell counts (RBC), hematocrit (HCT), and hemoglobin (HB). Peak aerobic capacity (peak VO2) was measured by exercise testing with oxygen uptake analysis to assess training. A Wilcoxon Mann‐Whitney U test examined changes between groups (P ≤ .05 for significance).RESULTS.AE peak VO2 increased by 6.3% (P = .001) and PS decreased by 4.6% (P = .083). RBC increased in AE from 4.10 to 4.21 million cells/μL and declined in PS from 4.30 to 4.19 million cells/μL; the between‐group differences were significant (P = .014). HCT increased in AE from 38.0% to 38.8% and declined in PS from 37.40% to 36.50%; the between‐group differences were significant (P = .046). HB increased in AE from 12.3 to 12.4 g/dL and declined in PS from 12.25 to 11.77 g/dL; the between‐group differences were significant (P = .009).CONCLUSIONS.The results of the current study suggest that moderate intensity aerobic exercise appears to maintain erythrocyte levels during radiation treatment of breast cancer compared with the declines observed in nontraining individuals. These findings suggest a safe, economical method to improve fitness and maintain erythrocytes in women during radiation treatment of breast cancer. Cancer 2006. © 2006 American Cancer Society.
IntroductionThere is a major need to better understand the molecular basis of triple negative breast cancer (TNBC) in order to develop effective therapeutic strategies. Using gene expression data from 587 TNBC patients we previously identified six subtypes of the disease, among which a mesenchymal-stem like (MSL) subtype. The MSL subtype has significantly higher expression of the transforming growth factor beta (TGF-β) pathway-associated genes relative to other subtypes, including the TGF-β receptor type III (TβRIII). We hypothesize that TβRIII is tumor promoter in mesenchymal-stem like TNBC cells.MethodsRepresentative MSL cell lines SUM159, MDA-MB-231 and MDA-MB-157 were used to study the roles of TβRIII in the MSL subtype. We stably expressed short hairpin RNAs specific to TβRIII (TβRIII-KD). These cells were then used for xenograft tumor studies in vivo; and migration, invasion, proliferation and three dimensional culture studies in vitro. Furthermore, we utilized human gene expression datasets to examine TβRIII expression patterns across all TNBC subtypes.ResultsTβRIII was the most differentially expressed TGF-β signaling gene in the MSL subtype. Silencing TβRIII expression in MSL cell lines significantly decreased cell motility and invasion. In addition, when TβRIII-KD cells were grown in a three dimensional (3D) culture system or nude mice, there was a loss of invasive protrusions and a significant decrease in xenograft tumor growth, respectively. In pursuit of the mechanistic underpinnings for the observed TβRIII-dependent phenotypes, we discovered that integrin-α2 was expressed at higher level in MSL cells after TβRIII-KD. Stable knockdown of integrin-α2 in TβRIII-KD MSL cells rescued the ability of the MSL cells to migrate and invade at the same level as MSL control cells.ConclusionsWe have found that TβRIII is required for migration and invasion in vitro and xenograft growth in vivo. We also show that TβRIII-KD elevates expression of integrin-α2, which is required for the reduced migration and invasion, as determined by siRNA knockdown studies of both TβRIII and integrin-α2. Overall, our results indicate a potential mechanism in which TβRIII modulates integrin-α2 expression to effect MSL cell migration, invasion, and tumorigenicity.
In many animal species the meiosis I spindle in oocytes is anastral and lacks centrosomes. Previous studies of Drosophila oocytes failed to detect the native form of the germline-specific γ-tubulin (γTub37C) in meiosis I spindles, and genetic studies have yielded conflicting data regarding the role of γTub37C in the formation of bipolar spindles at meiosis I. Our examination of living and fixed oocytes carrying either a null allele or strong missense mutation in the γtub37C gene demonstrates a role for γTub37C in the positioning of the oocyte nucleus during late prophase, as well as in the formation and maintenance of bipolar spindles in Drosophila oocytes. Prometaphase I spindles in γtub37C mutant oocytes showed wide, non-tapered spindle poles and disrupted positioning. Additionally, chromosomes failed to align properly on the spindle and showed morphological defects. The kinetochores failed to properly co-orient and often lacked proper attachments to the microtubule bundles, suggesting that γTub37C is required to stabilize kinetochore microtubule attachments in anastral spindles. Although spindle bipolarity was sometimes achieved by metaphase I in both γtub37C mutants, the resulting chromosome masses displayed highly disrupted chromosome alignment. Therefore, our data conclusively demonstrate a role for γTub37C in both the formation of the anastral meiosis I spindle and in the proper attachment of kinetochore microtubules. Finally, multispectral imaging demonstrates the presences of native γTub37C along the length of wild-type meiosis I spindles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.