Summary Burkholderia pseudomallei is a Category B pathogen and the causative agent of melioidosis – a serious infectious disease that is typically acquired directly from environmental reservoirs. Nearly all B. pseudomallei strains sequenced to date (>85 isolates) contain gene clusters that are related to the contact-dependent growth inhibition (CDI) systems of γ-proteobacteria. CDI systems from Escherichia coli and Dickeya dadantii play significant roles in bacterial competition, suggesting these systems may also contribute to the competitive fitness of B. pseudomallei. Here, we identify ten distinct CDI systems in B. pseudomallei based on polymorphisms within the cdiA-CT/cdiI coding regions, which are predicted to encode CdiA-CT/CdiI toxin/immunity protein pairs. Biochemical analysis of three B. pseudomallei CdiA-CTs revealed that each protein possesses a distinct tRNase activity capable of inhibiting cell growth. These toxin activities are blocked by cognate CdiI immunity proteins, which specifically bind the CdiA-CT and protect cells from growth inhibition. Using Burkholderia thailandensis E264 as a model, we show that a CDI system from B. pseudomallei 1026b mediates contact-dependent growth inhibition and is capable of delivering CdiA-CT toxins derived from other B. pseudomallei strains. These results demonstrate that Burkholderia species contain functional CDI systems, which may confer a competitive advantage to these bacteria.
Neisseria gonorrhoeae is a sexually transmitted pathogen that initiates infections in humans by adhering to the mucosal epithelium of the urogenital tract. The bacterium then enters the apical region of the cell and traffics across the cell to exit into the subepithelial matrix. Mutations in the fast intracellular trafficking (fitAB) locus cause the bacteria to transit a polarized epithelial monolayer more quickly than the wild-type parent and to replicate within cells at an accelerated rate. Here, we describe the crystal structure of the toxin-antitoxin heterodimer, FitAB, bound to a high affinity 36-bp DNA fragment from the fitAB promoter. FitA, the antitoxin, binds DNA through its ribbonhelix-helix motif and is tethered to FitB, the toxin, to form a heterodimer by the insertion of a four turn ␣-helix into an extensive FitB hydrophobic pocket. Neisseria gonorrhoeae (GC) 3 is the agent of the sexually transmitted disease, gonorrhea. The mechanisms used by GC to initiate infection have been very well characterized. Gonococci adhere via a multistep cascade and subsequently enter cells forming the epithelial barrier of the urogenital tract, traffic across these cells and exit into the subepithelial matrix (1, 2). Although studies have identified many of the molecular mechanisms used by GC to adhere to and enter cells, our knowledge of the mechanisms that operate in the later stages of infection is limited.GC are able to survive and grow within epithelial cells (3); they also traverse the epithelial monolayer to infect the stromal tissue of the subepithelium (2). The immune response to bacteria in the subepithelium produces the inflammation and purulent discharge characteristic of gonorrhea (4, 5). On occasion, GC establish a carrier state in which an asymptomatic individual harbors culturable and transmissible bacteria. These carriers are key to the spread of gonococcal disease, as humans are the only known reservoir for GC (6). The mechanisms by which GC maintains this persistent state are unknown. One hypothesis is that the organism resides within the epithelial cells instead of crossing into the subepithelium, thus evading the host immune response. The gene product(s) that affect GC intracellular growth and transcytosis are therefore important for the maintenance of gonococci in the human population.The fitAB operon was identified in a screen for GC mutants with a fast intracellular trafficking phenotype across polarized epithelial monolayers (3). A GC mutant that lacks fitAB grows normally extracellularly, but has an accelerated rate of intracellular replication with a concomitant increase in the rate at which this mutant traverses a monolayer of polarized epithelial cells. Thus, either FitA or FitB, or their complex, is hypothesized to slow intracellular replication and intracellular trafficking of GC.FitA is an 8.4-kDa protein with a predicted N-terminal ribbon-helix-helix (RHH) DNA binding motif (7,8). FitB is a 15.3-kDa protein with a predicted PIN (PilT-N terminus) domain according to the BLAST search t...
Initiation of a gonococcal infection involves attachment of Neisseria gonorrhoeae to the plasma membrane of an epithelial cell in the mucosal epithelium and its internalization, transepithelial trafficking, and exocytosis from the basal membrane. Piliation and expression of certain Opa proteins and the immunoglobulin A1 protease influence the transcytosis process. We are interested in identifying other genetic determinants of N. gonorrhoeae that play a role in transcellular trafficking. Using polarized T84 monolayers as a model epithelial barrier, we have assayed an N. gonorrhoeae FA1090 minitransposon (mTn) mutant bank for isolates that traverse the monolayer more quickly than the isogenic wild-type (WT) strain. From an initial screen, we isolated four mutants, defining three genetic loci, that traverse monolayers significantly more quickly than their WT parent strain. These mutants adhere to and invade cells normally and do not affect the integrity of the monolayer barrier. Backcrosses of the mutations into the WT FA1090 strain yielded mutants with a similar fast-trafficking phenotype. In two mutants, the mTns had inserted 370 bp apart into the same locus, which we have named fit, for fast intracellular trafficker. Backcrosses of one of these mutants into the MS11A genetic background also yielded a fast-trafficking mutant. The fit locus contains two overlapping open reading frames, fitA and fitB, whose deduced amino acid sequences have predicted molecular weights of 8.6 and 15.3, respectively. Neither protein contains a signal sequence. FitA has a potential helix-turn-helix motif, while the deduced sequence of FitB offers no clues to its function. fitA or fitB homologues are present in the genomes of Pseudomonas syringae and Rhizobium meliloti, but not Neisseria meningitidis. Replication of the MS11A fitA mutant in A431 and T84 cells is significantly accelerated compared to that of the isogenic WT strain. In contrast, growth of this mutant in liquid media is normal. Taken together, these results strongly suggest that traversal of N. gonorrhoeae across an epithelial barrier is linked to intracellular bacterial growth.
We previously demonstrated that the Neisseria IgA1 protease cleaves LAMP1 (lysosome-associated membrane protein 1), a major integral membrane glycoprotein of lysosomes, thereby accelerating its degradation rate in infected A431 human epidermoid carcinoma cells and resulting in the alteration of lysosomes in these cells. In this study, we determined whether the IgA1 protease also affects the trafficking of Neisseria gonorrhoeae across polarized T84 epithelial monolayers. We report that N. gonorrhoeae infection of T84 monolayers, grown on a solid substrate or polarized on semiporous membranes, also results in IgA1 protease-mediated reduction of LAMP1. We demonstrate that iga mutants in two genetic backgrounds exited polarized T84 monolayers in fewer numbers than the corresponding wild-type strains. Finally, we present evidence that these mutants have a statistically significant and reproducible defect in their ability to traverse T84 monolayers. These results add to our previous data by showing that the IgA1 protease alters lysosomal content in polarized as well as unpolarized cells and by demonstrating a role for the protease in the traversal of epithelial barriers by N. gonorrhoeae.Neisseria gonorrhoeae (i.e., the gonococcus [GC]) causes gonorrhea in humans, its only host, and gains entry into the body via the mucosal surfaces. There is no animal model for GC disease. Studies on the molecular requirements of GC interactions with the epithelium rely on human fallopian tube organ cultures (hFTOC), immortalized human epithelial cells grown on solid substrates, and the human challenge model of urethral infection. Such studies reveal that GC attach to and invade nonciliated cells of the mucosal epithelium through the coupling of several bacterial adhesins (type IV pili, PilC, and certain Opa variants) with their cognate host cell receptors (CD46, CD66, and heparan sulfate proteoglycans), which are present in a large number of human
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.