Realistic dislocation network topologies were generated by relaxing an initially pinning point free dislocation loop structure using three-dimensional discrete dislocation dynamics simulations. Traction-free finite-sized samples were used. Subsequently, these equilibrated structures were subjected to tensile loading and their mechanical behavior was investigated with respect to the initial configuration. A strong mechanical size effect was found. The flow stress at 0.2% plastic deformation scales with specimen size with an exponent between -0.6 and -0.9, depending on the initial structure and size regime. During relaxation, a mechanism, also favored by cross-slip, is identified which leads to rather stable pinning points. These pinning points are comparable to those of the isolated Frank-Read sources often used as a starting configuration in previous discrete dislocation dynamics simulations. These nodes act as quite stable dislocation sources, which can be activated multiple times. The influence of this source mechanism on the mechanical properties of small-scale specimens is discussed
Discrete dislocation dynamics simulations in three dimensions are performed on micro-sized bending beams and the results are compared with experiments. A strong size dependence of the flow stress rf (or bending moment) is found. The flow stress scales approximately inversely with the beam thickness t. The simulations show that the dislocation structure exhibits pronounced pile-ups around the neutral plane of the beam. The back stress from these pile-ups on the dislocation sources is analyzed by means of an analytical pile-up model. It is shown that the scaling behavior rf / t 1 can be explained by a combination of pile-up and source size limitation. Subsequently, the applicability of strain gradient plasticity models on micro-bending is discussed
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.