Steganography is the process of hiding data into public digital medium for secret communication. The image in which the secret data is hidden is termed as stego image. The detection of hidden embedded data in the image is the foundation for blind image steganalysis. The appropriate selection of cover file type and composition contribute to the successful embedding. A large number of steganalysis techniques are available for the detection of steganography in the image. The performance of the steganalysis technique depends on the ability to extract the discriminative features for the identification of statistical changes in the image due to the embedded data. The issue encountered in the blind image steganography is the non-availability of knowledge about the applied steganography techniques in the images. This paper surveys various steganalysis methods, different filtering based preprocessing methods, feature extraction methods, and machine learning based classification methods, for the proper identification of steganography in the image.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.