Pure TGS and amino acid (l-arginine, l-histidine and l-alanine) doped TGS crystals were grown by a slow evaporation solution growth technique at room temperature.
Actinobacteria is a prolific producer of complex natural products; we isolated a potential marine Streptomyces sp. PM49 strain from Bay of Bengal coastal area of India. The strain PM49 exhibited highly efficient antibacterial properties on multidrug-resistant pathogens with a zone of inhibition of 14-17 mm. SSF was adopted for the production of the secondary metabolites from PM49 with ISP2; utilizing agricultural wastes for compound extraction was also attempted. Bioactive fraction of Rf value 0.69 resolved using chloroform and ethyl acetate (1:1, v/v) was obtained and subjected to further analysis. Based on UV, IR, ESI-MS, and (1)H and (13)C NMR spectral analysis, it was revealed that the compound is closely similar to cyslabdan with a molecular mass of 467.66 corresponding to the molecular formula C25H41NO5S. ESBL and MBL production was screened in the hospital test isolates of Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, and Staphylococcus aureus. PCR amplification in the phenotypically positive strains was positive for bla IMP, bla SHV, bla CTX-M, and mec genes. The β-lactamase enzyme from tested strains had cephalosporinase activity with a 31-kDa protein and isolated compound from the strain possessing β-lactamase inhibitory potential. MIC of the active fraction was 16-32 μg/ml on ATCC strains; the ceftazidime and meropenem sensitive and resistant test strains showed MIC of 64-256 μg/ml. The Streptomyces sp. PM49 aerial mycelium was rectiflexibile; the 16S rRNA showed 99 % identity with Streptomyces rochei and submitted at Genbank with accession no JX904061.1.
The water and liquid repelling materials due to their low surface energy and specific nanometer and micrometer scale roughness have particular interest due to the great variety of potential applications ranging from self-cleaning surfaces to microfluidic devices. Natural plant-based polymer hydrophobic coatings have several engineering and biomedical applications. In this study, natural plants such as Aloe vera and Acalypha indica were used for preparation of polystyrene hydrophobic film by the dip-coating method. The effects of Aloe vera and Acalypha indica extract on the morphological, structural, optical and antibacterial properties of as-prepared polystyrene thin films were studied. FTIR spectra were carried out to ascertain the presence of functional groups in the prepared polymeric film. Contact angle measurement showed that the PS/ Aloe vera has higher anti-wetting property (CA = 112°) compared to PS/ Acalypha indica (CA = 104°), which could be confirmed by the surface morphology analysis. Furthermore, the effective antibacterial activity against Klebsiella pneumoniae and Staphylococcus aureus was compared by agar-well diffusion method. The observed result reports, PS with Aloe vera film exhibit higher hydrophobic with antibacterial activity compared to PS with Acalypha indica film. In addition, the PS/ Aloe vera coated cotton maintained their repellent properties against various liquids for 10 h, while PS/ Acalypha indica coated cotton exhibit anti-wetting property for 4 h. These findings open up new avenues for the preparation of hydrophobic film for various biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.