To report laser pointer induced damage to retina and choroid and briefly review literature. A case report of a 13-year old Caucasian boy developed blurry central vision and central scotoma in right eye (OD). He was exposed for one minute to class IIIA green laser pointer of 650 nm wavelength and 5 mW power. Clinical examination showed a grayish lesion in foveal region. Ancillary testing revealed disruption of the retinal pigment epithelial (RPE) layer in foveal region and indocyanine green angiography demonstrated evidence of choroidal hypofluorescence suggestive of choroidal infarction in OD. Visual acuity improved from 20/100 to 20/60 in one day and he was treated with tapering doses of oral prednisolone (40 mg) for 3 weeks. Laser pointer with a power of >5 mW caused damage to RPE in the macula. Children should not be given laser pointers as toys especially those with label of danger instructions.
Life’s fundamental processes involve multiple molecules operating in close proximity within cells. To probe the composition and kinetics of molecular clusters confined within small (diffraction-limited) regions, experiments often report on the total fluorescence intensity simultaneously emitted from labeled molecules confined to such regions. Methods exist to enumerate total fluorophore numbers (e.g., step counting by photobleaching). However, methods aimed at step counting by photobleaching cannot treat photophysical dynamics in counting nor learn their associated kinetic rates. Here we propose a method to simultaneously enumerate fluorophores and determine their individual photophysical state trajectories. As the number of active (fluorescent) molecules at any given time is unknown, we rely on Bayesian nonparametrics and use specialized Monte Carlo algorithms to derive our estimates. Our formulation is benchmarked on synthetic and real data sets. While our focus here is on photophysical dynamics (in which labels transition between active and inactive states), such dynamics can also serve as a proxy for other types of dynamics such as assembly and disassembly kinetics of clusters. Similarly, while we focus on the case where all labels are initially fluorescent, other regimes, more appropriate to photoactivated localization microscopy, where fluorophores are instantiated in a non-fluorescent state, fall within the scope of the framework. As such, we provide a complete and versatile framework for the interpretation of complex time traces arising from the simultaneous activity of up to 100 fluorophores.
Effective forces derived from experimental or in silico molecular dynamics time traces are critical in developing reduced and computationally efficient descriptions of otherwise complex dynamical problems. This helps motivate why it is important to develop methods to efficiently learn effective forces from time series data. A number of methods already exist to do this when data are plentiful but otherwise fail for sparse datasets or datasets where some regions of phase space are undersampled. In addition, any method developed to learn effective forces from time series data should be minimally a priori committal as to the shape of the effective force profile, exploit every data point without reducing data quality through any form of binning or pre-processing, and provide full credible intervals (error bars) about the prediction for the entirety of the effective force curve. Here, we propose a generalization of the Gaussian process, a key tool in Bayesian nonparametric inference and machine learning, which meets all of the above criteria in learning effective forces for the first time.
Purpose: To report a new family with North Carolina macular dystrophy including a patient with choroidal neovascularization (CNV).Methods: Diagnostic modalities included fundus imaging, fluorescein angiography, optical coherence tomography, and genetic testing. The CNV was treated with intravitreal anti-vascular endothelial growth factor according to a treat-and-extend protocol in both eyes.Results: A 60-year-old man presented with North Carolina macular dystrophy with decreasing vision in the left eye and persistently deceased central vision in the right eye. Optical coherence tomography examination showed intraretinal and subretinal fluid consistent with CNV. Genetic testing was performed. Examination of family members showed no signs of CNV. The visual acuity improved from 20/400 to 20/150 in the right eye and from 20/100 to 20/40 in the left eye after intravitreal bevacizumab treatment for CNV. Molecular analysis of the PRDM13 gene revealed a pathogenic heterozygous point mutation.Conclusion: Recognition and treatment of CNV in North Carolina macular dystrophy can result in improved vision. Genetic testing of the PRDM13 gene can confirm a molecular diagnosis for North Carolina macular dystrophy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.