New electrically conducting copolymers based on biphenyl and thiophene in a form of film were synthesized by electropolymerization using potentiostatic conditions and the corresponding homopolymers, polyphenylenes, and polythiophenes, for comparison reasons. Different values of applied potential were used, to study its effect on the structure, morphology, and electrical conductivity of the films. From the analysis of the current-time curves, it was found that the growth of the films follows layer by layer (2D) mechanism. The films were studied by FTIR, TGA, XRD, SEM-EDAX and their electrical conductivity was determined, as well as their energy gap (E g ) by cyclic voltammetry. The copolymers had higher conductivity (appr. 1 S/cm) and lower E g (appr. 1.2 eV) than that of the corresponding homopolymers. These materials due to their high conductivity, high stability under repetitive potential cycling, and partial solubility are candidates for electronic applications.
PAN fibres, consisting of poly[acrylonitrile-co-(methyl acrylate)], were oxidatively heat treated at low temperatures (up to 180 • C), during which the basic macromolecular backbone was not cyclized. The change of length of the fibres was determined under various treatment conditions (ie temperature, time, stress applied). Prolonged heat treatment resulted in lower tensile strength of the fibres. The pristine and treated fibres were characterized by Fourier-transform infrared (FTIR), NMR and UV-visible spectroscopy and by TGA, and the results were used for representing the different regions according to chemical aspects in a plot of temperature versus time; this is very important for the whole treatment process. A shrinkage model was proposed, having both scientific and technical importance. The change in activation volume of shrinkage of fibres with temperature, calculated from this model, is indicative of the physical transitions taking place at the molecular scale.
It has been established that the most important step in the production of carbon fibres from polyacrylonitrile (PAN) precursor fibres is the oxidative thermal treatment applied. During this treatment, physical phenomena and chemical reactions take place accompanied by the shrinkage of the fibres, which has a physical or chemical origin, depending on the nitrile cyclization reactions. The aim of the present study is to establish a correlation between the chemical shrinkage of PAN fibres and the kinetics of cyclization reactions. Based on the isothermal treatment of PAN fibres, we developed a method in order to distinguish between physical and chemical shrinkages. The onset time for the chemical shrinkage follows a relationship with temperature. Chemical shrinkage versus cyclization time data were fitted with the exponential rise to the maximum of the curves. Furthermore, the cyclization kinetics was studied using differential scanning calorimetry and the kinetic parameters determined were identical to those calculated from the chemical shrinkage, demonstrating that the latter is directly related to the kinetics of the cyclization reactions. It was therefore concluded that according to the method developed to distinguish the physical from the chemical shrinkages: (1) there exists a certain onset time for a given treatment temperature to trigger the chemical shrinkage; (2) cyclization reactions do not start below a limiting temperature of 168 • C; (3) at 340 • C, the temperature where the cyclization reactions are completed, the maximum shrinkage is 24%; and (4) the oxidized PAN fibres contain mainly ladder polymer structures with approximately symmetrical sequences connected in angled positions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.