The NOvA experiment has seen a 4.4σ signal ofν e appearance in a 2 GeVν μ beam at a distance of 810 km. Using 12.33 × 10 20 protons on target delivered to the Fermilab NuMI neutrino beamline, the experiment recorded 27ν μ →ν e candidates with a background of 10.3 and 102ν μ →ν μ candidates. This new antineutrino data are combined with neutrino data to measure the parameters jΔm 2 32 j ¼ 2.48 þ0.11 −0.06 × 10 −3 eV 2 =c 4 and sin 2 θ 23 in the ranges from (0.53-0.60) and (0.45-0.48) in the normal neutrino mass hierarchy. The data exclude most values near δ CP ¼ π=2 for the inverted mass hierarchy by more than 3σ and favor the normal neutrino mass hierarchy by 1.9σ and θ 23 values in the upper octant by 1.6σ.
The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of 7.2× 6.1× 7.0 m3. It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range 0.3 GeV/c to 7 GeV/c. Beam line instrumentation provides accurate momentum measurements and particle identification. The ProtoDUNE-SP detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment, and it incorporates full-size components as designed for that module. This paper describes the beam line, the time projection chamber, the photon detectors, the cosmic-ray tagger, the signal processing and particle reconstruction. It presents the first results on ProtoDUNE-SP's performance, including noise and gain measurements, dE/dx calibration for muons, protons, pions and electrons, drift electron lifetime measurements, and photon detector noise, signal sensitivity and time resolution measurements. The measured values meet or exceed the specifications for the DUNE far detector, in several cases by large margins. ProtoDUNE-SP's successful operation starting in 2018 and its production of large samples of high-quality data demonstrate the effectiveness of the single-phase far detector design.
We present updated results from the NOvA experiment for ν μ → ν μ and ν μ → ν e oscillations from an exposure of 8.85 × 10 20 protons on target, which represents an increase of 46% compared to our previous publication. The results utilize significant improvements in both the simulations and analysis of the data. A joint fit to the data for ν μ disappearance and ν e appearance gives the best-fit point as normal mass hierarchy, Δm 2 32 ¼ 2.44 × 10 −3 eV 2 =c 4 , sin 2 θ 23 ¼ 0.56, and δ CP ¼ 1.21π. The 68.3% confidence intervals in the normal mass hierarchy are Δm 2 32 ∈ ½2.37; 2.52 × 10 −3 eV 2 =c 4 , sin 2 θ 23 ∈ ½0.43; 0.51 ∪ ½0.52; 0.60, and δ CP ∈ ½0; 0.12π ∪ ½0.91π; 2π. The inverted mass hierarchy is disfavored at the 95% confidence level for all choices of the other oscillation parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.