Entangled ring polymers behave like gels. By applying uniaxial compression and stretching to such gels initially equilibrated with molecular rebridging Monte Carlo moves, and using isoconfigurational ensemble simulations to explore the tube confinement, we studied the strain dependence of the tube contour and tube diameter. It is found that the tube contour length increases with both compression and stretching, the tube diameter increases with strain monotonically, and the strain dependences of both tube contour length and tube segment orientation are well described by the independent alignment approximation (IAA). For strains ranging between 0.5 and 2.0, fractional changes of the tube contour length and the tube diameter are less than 10%. The orientation dependence of the tube diameter is also analyzed and found to be weak. These results should prove useful for constructing theories of gel elasticity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.