Physical quality traits (1000-kernel weight, density, milling response and soft endosperm portion), basic chemical (starch, protein, oil, cellulose and ash) and amino acids composition of ten ZP maize genotypes differing in kernel hardness and colour were studied. The objectives of this study were to characterize differences in ZP maize genotypes regarding to various physical traits and nutritional quality parameters such as basic chemical and amino acid composition and the data was correlated to find the interrelationship between these parameters. Kernel physical traits and chemical composition significantly varied among tested genotypes. A significant negative correlation was found between protein content and portion of soft endosperm as well as a significant positive correlation between protein content and two physical traits, milling response and density. Protein content showed a non-significant negative correlation with starch content. The results showed that the protein content exhibited negative correlation with lysine as well as positive correlation with methionine. It has not been observed a significant improvement in the amino acid composition regarding the specialty genotypes such as the selected white and red kernels and popping maize genotypes. The information presented in this study could be useful for the utilization improvement of maize kernel and the development of maize-based ingredients to prepare nutritious feed and food products.
This study confirms the hypothesis that new and prospective maize inbred lines and hybrids possess dominant property of an efficient photosynthetic model. This and other relevant traits are successfully used in breeding programmes, modern technologies of seed and commercial maize production. This statement is supported by the displayed results on the erect position of the top leaves of new maize inbred lines and photosynthetic and fluorescence parameters: the change of the delayed chlorophyll fluorescence intensity during its course and dynamics, the Arrhenius criterion for the determination of critical temperatures (phase transition temperatures) and the activation energies, as a measure of conformational changes in chloroplasts and thylakoid membranes. Furthermore, a grain structure including its physical and chemical properties of new maize inbred lines and hybrids was analyzed in the present study. In addition, breeding procedures, seed production, technological traits, properties and parameters of new and prospective maize inbred lines and maize hybrids were observed in the present study. Presented results show that properties of these inbred lines and maize hybrids are based on the nature of conformational and functional changes that occur in their chloroplasts and thylakoid membranes, as well as, on progressive effects in maize breeding, seed production and commercial maize production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.