In this study we have analysed mouse telomeres by Pulsed Field Gel Electrophoresis (PFGE). A number of specific restriction fragments hybridising to a (TTA-GGG)4 probe in the size range 50-150kb can be detected. These fragments are devoid of sites for most restriction enzymes suggesting that they comprise simple repeats; we argue that most of these are likely to be (TTAGGG)n. Each discrete fragment corresponds to the telomere of an individual chromosome and segregates as a Mendelian character. However, new size variants are being generated in the germ line at very high rates such that inbred mice are heterozygous at all telomeres analysable. In addition we show that specific small (approximately 4-12kb) fragments can be cleaved within some terminal arrays by the restriction enzyme MnII which recognises 5'(N7)GAGG3'. Like the complete telomere-repeat arrays (TRA's) these fragments form new variants at high rates and possibly by the same process. We speculate on the mechanisms that may be involved.
Oligonucleotides were annealed to complementary sequences in fixed human metaphase chromosomes and extended with DNA polymerase. The newly synthesized fragments were labeled by incorporating bio-11-dUTP instead of TTP, and the sites of synthesis were detected by immunocytochemistry, using fluorochromes as the reporter molecules. We have obtained clear localization with oligonucleotides from alphoid (centromeric sequences), simple sequence (satellite) DNAs, a variety of Alu-dispersed repeated sequences, and oligonucleotides derived from the Tetrahymena and Trypanosoma telomere-specific sequences. The simple sequence and alphoid oligonucleotides gave results at least comparable to those obtained using the whole molecule as a probe for in situ hybridiza tion, whereas the Alu oligonucleotides produced a diversity of results which depended on the absolute length and location of the oligonucleotide within the Alu sequence. The telomere-specific oligomers also produced a variety of results. The G-rich Trypanosoma oligomer and its complementary C-rich sequence produced strong telomeric signals and some interstitial signals on mouse chromosomes, but only weak telomeric signals on human chromosomes. The G-rich Tetrahymena oligomer produced detectable telomeric signals on human chromosomes. The technique appears to be a valuable extension of present tools for mapping and examining the organization of DNA sequences within chromosomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.